Б.В. Дзюбенко

Московский авиационный институт (государственный технический университет), Россия

ВЛИЯНИЕ ЗАКРУТКИ ПОТОКА НА ТЕПЛОМАССООБМЕН В УСЛОВИЯХ СОЛЕОТЛОЖЕНИЙ В ВИТЫХ ТРУБАХ

АННОТАЦИЯ

Исследовано влияние закрутки потока на уменьшение солеотложений при течении внутри витых труб воды с большим содержанием минеральных солей методом теплообменника типа «труба в трубе». Обнаружено, что при закрутке потока витыми трубами значительно уменьшаются загрязнения в теплообменниках и что термическое сопротивление слоя загрязнения на поверхностях труб асимптотически стремится с течением времени к постоянному значению этого сопротивления. Такое поведение термического сопротивления загрязнения в каналах с закруткой потока позволяет обеспечить работоспособность теплообменных аппаратов с витыми трубами в течение длительного периода их эксплуатации без очистки поверхности от загрязнений, что невозможно для аппаратов с гладкими круглыми трубами. Выполненное исследование позволило также получить обобщающую зависимость для расчета термического сопротивления загрязнений в широком диапазоне изменения режимных и геометрических параметров для витых труб.

1. ВВЕДЕНИЕ

Управление процессами загрязнения поверхности теплообмена при использовании охлаждающей воды, содержащей соли временной жесткости, является весьма важной проблемой. При использовании такой воды, температура которой растет в направлении потока, на поверхностях теплообмена образуются отложения солей. Поэтому необходимо либо предотвратить, либо уменьшить интенсивность роста загрязнений на теплообменных поверхностях.

В последнее время большой интерес проявлялся к проблеме уменьшения солеотложений на поверхностях теплообмена путем искусственной турбулизации потока [1, 2]. Уменьшение солеотложений в каналах с дискретной турбулизацией и закруткой потока связано с интенсивным обменом порциями жидкости между пристенным слоем и ядром потока в этих каналах. При этом современные концепции механизма солеотложений на гладких поверхностях [3-7] могут быть использованы при построении качественной модели, описывающей процесс солеотложения на поверхностях с искусственной турбулизацией потока.

Целью работы являются исследование влияния закрутки потока на рост термического сопротивления загрязнений на поверхностях витых труб и проверка закономерности протекания этого процесса со временем, согласно которой после достижения некоторого значения термическое сопротивление во времени не изменяется и описывается экспоненциальной зависимостью

$$R_{foul} = R_{foul\infty} \lfloor 1 - \exp(-\beta\tau) \rfloor, \qquad (1)$$

где $R_{foul\infty}$ — термическое сопротивление отложений при $\tau \to \infty$, которую необходимо обосновать теоретически и экспериментально.

2. ТЕОРЕТИЧЕСКАЯ МОДЕЛЬ СОЛЕОТЛОЖЕНИЙ

При отложениях происходят два одновременных процесса: солеотложение и вынос из пристенного слоя осадков, образовавшихся на границе раздела фаз и не осевших на стенке:

$$\frac{\mathrm{d}m}{\mathrm{d}\tau} = \rho_{foul} \lambda_{foul} \frac{\mathrm{d}R_{foul}}{\mathrm{d}\tau} = \Theta_{\mathrm{dep}} - \Theta_{\mathrm{car}} \,. \tag{2}$$

Скорость отложений Θ_{dep} пропорциональна

концентрации солей С в потоке жидкости [7]:

$$\Theta_{dep} = \rho_{foul} \lambda_{foul} K_1 \left(\frac{C}{1/K_p + 1/K_R} \right) - K_D C_W , \qquad (3)$$

где K_1 , K_p , K_R , K_D — коэффициенты, зависящие от скорости течения, температуры и геометрических параметров канала. Процесс выпадения осадков определяется процессом массообмена из-за разности концентрации солей в ядре потока и на стенке и процессом протекания химических реакций на границе раздела фаз.

Скорость выноса солеотложений с поверхности раздела фаз определяется поверхностной силой, с которой поток воздействует на слой отложений и которая возрастает с увеличением толщины слоя отложений, т.е. с ростом R_{foul} . В трубах с кольцевыми диафрагмами и витых трубах при одной и той же скорости течения касательные напряжения больше, чем в гладких круглых трубах, и скорость выноса солеотложений также более существенна:

$$\Theta_{car} = K_2 \tau_w R_{foul} = K_3 \xi w^2 R_{foul} , \qquad (4)$$

где $\xi = 8\tau_w / (\rho w^2)$ — коэффициент гидравлического сопротивления; K_2 и K_3 – коэффициенты.

Подставляя в (2) значения Θ_{dep} и Θ_{car} из выражений (3) и (4), можно получить путем интегрирования уравнения (2) с граничными условиями: при $\tau = 0$ $R_{foul} = 0$ и при $\tau \to \infty$ $R_{foul} = R_{foul\infty}$, уравнение (1).

Тогда зависимость для расчета термического сопротивления слоя отложений можно представить в виде

$$R_{foul} = \frac{K_1 C}{K_3 \left(\frac{1}{K_p} + \frac{1}{K_R} \right)} \frac{1}{\xi w^2} \left[1 - \exp\left(-K_3 \xi w^2 \tau\right) \right].$$
(5)

Уравнение (5) отражает влияние скорости течения, концентрации присадки в охлаждающую воду и параметров закрутки и турбулизации потока на термическое сопротивление отложений. В уравнении (5) коэффициент K_3 зависит от скорости и геометрических параметров турбулизаторов на поверхности трубы и закрутки потока.

Тогда обобщение опытных данных и получение зависимости термического сопротивления слоя отложений для витых труб от определяющих параметров следует искать в виде функциональной связи

$$R_{foul} = f\left(\operatorname{Re}_{c}, C, \tau / \tau_{\infty}, s / d\right), \tag{6}$$

а для труб с кольцевыми диафрагмами [2] — в виде:

$$R_{foul} = f(\operatorname{Re}_{c}, C, \tau / \tau_{\infty}, d / D, t / D).$$
 (7)

3. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА И МЕТОДИКА ИССЛЕДОВАНИЯ

Схема экспериментальной установки для изучения процесса солеотложений внутри витой трубы с относительными шагами s/d=6,2 и 12,2 была аналогична схеме установки для изучения солеотложений снаружи труб с кольцевой накаткой (рис. 1) [1]. Отличие состояло только в том, что греющий теплоноситель - хлопковое масло подавалось в кольцевой канал теплообменника типа «труба в трубе», а нагреваемая соленая вода протекала внутри витой трубы овального профиля и труб с кольцевыми диафрагмами. Теплообменник работал по противоточной схеме. Хлопковое масло предварительно нагревалось до температуры, равной 110-115 °С. Холодная вода с заданным солесодержанием обладала карбонатной жесткостью до 20 мг-экв/л. В течение экспериментов заданная карбонатная жесткость воды поддерживалась путем добавления в циркулирующую холодную воду некоторого количества воды с более высокой жесткостью из специального резервуара (рис. 1). В опытах измерялись температуры на входе и выходе из теплообменника для греющего и холодного теплоносителей, а также их расходы.

При заданных параметрах жидкостей на входе в теплообменник опыты продолжались до момента времени, когда прекращалось временное изменение термического сопротивления солеотложений. Этот момент времени зависел от скорости течения *w*, температуры, концентрации примесей и геометрических параметров, определяющих эффект интенсификации тепломассообмена в исследуемых каналах.

Исследуемые трубы имели внешний диаметр $D_{out} = 10,4$ мм (исходный диаметр витой трубы) и внутренний диаметр D = 10 мм. Трубы были изготовлены из нержавеющей стали. Внутренний диаметр внешней трубы теплообменника типа «труба в трубе» составлял 26мм, а ширина кольцевого канала — 5мм. При этом

эквивалентный диаметр кольцевого канала был равен *d_{eq}* = 10мм. Длина теплообменника составляла *l* = 2,5м.

Рис. 1. Схема установки для изучения процесса солеотложения в каналах с интенсификацией теплообмена [1]: *I*- баллон с CO₂; *2* – бак с соленой водой; *3* – ротаметр; *4* – расходный бак; *5*, *15* – насосы; *6* – резервуар с водой, содержащей соли заданной концентрации; *7*, *8* – теплообменник типа «труба в трубе»; *9*, *12* – термометры; *10* – холодильник; *11* – расходомер; *13* – бак для хлопкового масла; *14* – электронагреватель; *16* – смесительная камера; *17* – термопара

Методика эксперимента позволяла определять изменения термического сопротивления в зависимости от роста слоя солеотложений. По результатам определения линейных коэффициентов теплопередачи в начальный и конечный моменты времени:

$$K_{l0} = Q_0 / (\pi l \Delta T_0), \qquad (8)$$

$$K_{l\tau} = Q / (\pi l \Delta T) \tag{9}$$

определялся линейный термический коэффициент слоя солеотложений:

$$R_{lfoul} = \frac{1}{K_{l\tau}} - \frac{1}{K_{l0}} = \frac{\delta_{foul}}{\lambda_{foul}D},$$
(10)

в предположении, что процесс солеотложений не влияет на коэффициенты теплоотдачи снаружи и внутри исследуемой трубы. Термическое сопротивление внутри трубы составляет

$$R_{foul} = R_{lfoul} D, \tag{11}$$

где R_{lfoul} определяется по уравнению (10). Помимо двух витых труб овального профиля с относительным шагом закрутки s/d = 6,2 и 12,2, были исследованы гладкие круглые трубы и трубы с кольцевыми диафрагмами со следующими параметрами турбулизации потока d/D и t/D, равными 0,91 и 0,5; 0,91 и 0,25; 0,885 и 0,5. Исследования проводились в следующем диапазоне параметров: температура холодной воды на входе в теплообменник $t'_c = 20 \div 30 \ ^{\circ}C$; скорость воды $w = 0.05 \div 1.82 \ m/c$; число Рейнольдса $\text{Re}_c = (3 \div 25) \cdot 10^3$; температура стенки $t_w = 70 \div 100 \ ^{\circ}C$; карбонатная жесткость воды C = 5, 10 и 20 мг-экв/л; время непрерывного проведения исследования до 360 ч.

4. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Результаты экспериментального исследования процесса солеотложения в витых трубах, гладких

круглых трубах и трубах с кольцевыми диафрагмами представлены на рис. 2, 3. Из рис. 2 видно, что для гладких круглых труб коэффициент теплопередачи уменьшается в течение 280 ч приблизительно в 2,5 раза при концентрации соли (карбонатной жесткости воды) C = 10мг-экв/л и в 3-4 раза при C == 20мг-экв/литр. В этом случае термическое сопротивление слоя солеотложений не достигает асимптотического значения. Для витых труб и труб с кольцевыми диафрагмами при C = 10мг-экв/л и Re = =4.10³ за 200-240 часов работы коэффициент теплопередачи уменьшается только на 25 %, а термическое сопротивление выходит на свое асимптотическое значение. При концентрации С = 20мг-экв/л коэффициент теплопередачи для труб с интенсификацией уменьшается на 40-50 %, что значительно меньше, чем для гладких круглых труб. Таким образом, коэффициент теплопередачи в витых трубах и трубах с кольцевыми диафрагмами при солеотложении превышает значения этого коэффициента в гладких трубах в начальный момент времени, когда отложения отсутствуют.

Рис. 2. Измерение коэффициента теплопередачи во времени: а – C = 10мг-экв/л; в – C = 20мг-экв/л; 1 – труба с кольцевыми диафрагмами при Re = $4 \cdot 10^3$, d/D = 0,91 и t/D = 0,5; 2 – витая труба с s/d = 6,2 при Re = $4 \cdot 10^3$; $3 \cdot 5$ – гладкая круглая труба при Re = $16 \cdot 10^3$; $14 \cdot 10^3$ и $3,2 \cdot 10^3$ соответственно

Эффективность труб с интенсификаторами и закруткой потока при солеотложении увеличивается по сравнению с эффективностью гладких круглых труб. Это видно из рассмотрения рис.3. Если в начальный момент процесса солеотложения ($\tau = 0$) отношение коэффициента теплопередачи труб с кольцевыми диафрагмами и витых труб к коэффициенту теплопередачи гладких труб составляет $K_l / K_{lsm} = 2.5 \div 3$, то при $\tau / \tau_{\infty} = 1$ отношение $K_l / K_{lsm} = 3.5 \div 5$.

Результаты экспериментального исследования процесса солеотложения в трубах с закруткой потока и с кольцевыми диафрагмами были обобщены зависимостями вида (6) и (7) для расчета термического сопротивления слоя солеотложений [8]. Для труб с кольцевыми диафрагмами экспериментальные данные хорошо описываются степенной зависимостью:

Рис. 3. Изменение коэффициента теплопередачи в зависимости от безразмерного времени τ/τ_{∞} при C = 10мг-экв/л и Re= 10^4 ($\tau_{\infty} = 250$ ч): 1-3 – трубы с кольцевыми диафрагмами при d/D = 0.91 и t/D = 0,5; d/D = 0.91 и t/D = 0,25; d/D = 0.935 и t/D = 0,5 соответственно; 4, 5 – витые трубы при s/d = 6,2 и s/d = 12,2 соответственно; 6 – гладкая круглая труба

$$R_{foul} = 11.81 \operatorname{Re}^{-0.29} C^{0.214} \left(\frac{\tau}{\tau_{\infty}}\right)^{0.129} \times \left(\frac{d}{D}\right)^{0.701} (0.062 + 1.2 \cdot 10^{-3} \frac{t}{D}),$$
(12)

которая справедлива для $t_{\infty} = 250$ ч и следующего диапазона изменения параметров: d/D = 0.91-0.94, t/D = 0.25-0.5, Re = (4-25)·10³, C = 5-20 мг-экв/л.

Для витых труб опытные данные по солеотложению в условиях закрутки потока хорошо обобщаются следующей зависимостью:

$$R_{foul} = 0.204 \,\mathrm{Re}^{-0.227} \, C^{0.36} \left(\frac{\tau}{\tau_{\infty}}\right)^{0.236} \cdot \left(\frac{s}{d}\right)^{0.447}, \qquad (13)$$

полученной в диапазоне изменения параметров: s/d = 6.2-12.2, Re = $(3.2-25)\cdot 10^3$, C = 5-20 мг-экв/л

при $\tau_{\infty} = 250$ ч. В зависимостях (12) и (13) термическое сопротивление слоя солеотложений R_{foul} измеряется в м²·K/Вт.

В результате экспериментального исследования процесса солеотложения было показано, что искусственная турбулизация потока внутри витых труб и труб с кольцевыми диафрагмами позволяет существенно уменьшить солеотложения на их внутренних поверхностях (рис. 3). Влияние солеотложений на коэффициент теплопередачи учитывалось введением термического сопротивления солеотложений в выражение, определяющее этот коэффициент для цилиндрической стенки:

$$\frac{1}{K_l} = \frac{1}{\alpha_1 D} + \frac{1}{2\lambda_w} \ln \frac{D_{out}}{D} + R_{lfoul} + \frac{1}{\alpha_2 \cdot D_{out}}, \qquad (14)$$

где α_1 и α_2 – коэффициенты теплоотдачи внутри и снаружи трубы; R_{lfoul} – линейное термическое сопротивление слоя солеотложений на внутреннем диаметре трубы.

5. ЗАКЛЮЧЕНИЕ

Выполненные исследования показали, что закрутка потока внутри витых овальных труб и турбулизация потока кольцевыми диафрагмами позволяют значительно интенсифицировать тепломассообмен в этих каналах и уменьшить за счет этого солеотложения на внутренних поверхностях. При этом обнаружено, что с течением времени термическое сопротивление слоя солеотложений внутри этих труб асимптотически приближается к своему постоянному значению, что не наблюдается на внутренних поверхностях гладких круглых труб. Интенсификация тепломассообмена в трубах позволяет уменьшить минеральные отложения на внутренней поверхности примерно в 5 раз по сравнению с гладкими круглыми трубами. При этом замена гладких круглых труб витыми трубами или трубами с кольцевой накаткой позволяет обеспечить надежную работу трубчатых теплообменных аппаратов без специальной очистки их поверхностей от солеотложений.

СПИСОК ОБОЗНАЧЕНИЙ

- С карбонатная жесткость воды, мг-экв/л;
- *d* максимальный размер овального профиля витой трубы, м;
- *K_D* коэффициент массообмена на поверхности раздела фаз, м³/с;

- K_l линейный коэффициент теплопередачи, Вт/(м·К);
- K_p коэффициент массообмена солей в воде, м³/с;
- K_R постоянная химической реакции поглощения солей поверхностью, м³/с;
- *m* величина отложений на единицу поверхности, кг/м²;
- *Q* тепловой поток, Вт;
- Re число Рейнольдса, $\rho w d_{eq}/\mu$;
- *s* шаг закрутки витых труб, м;
- *t* шаг турбулизаторов, м;
- *w* среднерасходная скорость, м/с;
- α коэффициент теплоотдачи, Вт/(м²·К);
- δ_{foul} толщина отложений, м;
- ΔT перепад температур, Па;
- Θ_{dep} скорость отложения осадков, кг/с;
- Θ_{car} скорость выноса осадков, кг/с;.
- λ коэффициент теплопроводности, Вт/(м·К);
- μ коэффициент динамической вязкости, Па·с;
- *ρ* плотность, кг/м³;
- τ_w касательное напряжение трения на стенке, Па.

СПИСОК ЛИТЕРАТУРЫ

- Dreitser G.A., Dubrovskiy Ye.V., Dzyubenko B.V. et al. Heat transfer: Soviet reviews, Vol.2. Enhancement of heat transfer, eds. A.A. Zukauskas, E.K. Kalinin, and J. Taborek, Hemisphere, New York, 1990.
- Kalinin E.K., and Dreitser G.A. Heat Transfer Enhancement in Heat Exchangers// Advances in Heat Transfer, Academic Press, New York, 1998. Vol. 31. P.159–332.
- Chan S.H. Heat and mass transfer in fouling, in Annular Review of Heat Transfer, Hemisphere Publishing, New York, 1992. Vol. 4. P. 363–402.
- Knudsen J.G., and Roy B.U. Influence of fouling in heat transfer, Proc. 7 th Int. Heat Transfer Conference 1982, Hemisphere, New York, 1982. Vol. 2. P. 289–300.
- Müller-Steinhagen H., Fouling: The ultimate challenge for heat exchanger design, Transport Phenomena in Thermal Engineering, Begell House, Inc. Publishers, New York, 1993. Vol. 2. P. 811–823.
- Kim M.-H. and Webb R.L. Particulate fouling inside tubes having a re-shaped two-dimensioned roughness by a flowing suspension of aluminium oxide in water. Proc. 9th Int. Heat Transfer Conference 1990, Hemisphere, New York, 1990. Vol. 5. P. 139–144.
- Pinhero J. Fouling of heat transfer surfaces // In Heat Exchangers-Thermal Hydraulic Fundamentals and Design, eds. S. Kakas, A.E. Bergles, and F. Meinger, McGraw-Hill, New York, 1981. P. 1013–1035.
- Dreitser G. and Dzyubenko B. Decrease of Salt Depositions in Channels with Discrete Turbulence Promoters and Flow Swirling // Proc. ECI conf. on Heat Exchanger Fouling and Cleaning: Challenger and Opportunities, June 5-10, 2005. Kloster Irsee, Germany, 6 p.