Ю.И. Шанин

ФГУП «Научно-исследовательский институт научно-производственное объединение «ЛУЧ», Подольск, Россия

ИССЛЕДОВАНИЕ ПРОЦЕССОВ ТЕПЛОМАССОПЕРЕНОСА В ГИРИДНЫХ ТЕПЛОВЫХ НАСОСАХ

АННОТАЦИЯ

Разработана математическая модель и набор программ для компьютерного моделирования работы гидридных тепловых насосов (ГТН). Система уравнений включает нестационарные уравнения теплового баланса в гидридных сорберах с учетом тепловых эффектов при поглощении/выделении водорода. Учитываются условия при теплообмене сорберов с внешними теплоносителями, их реальная геометрия и конструктивные особенности. Используются экспериментальные данные по равновесным изотермам в системах металлический сплав-водород и данные о работе реального ГТН.

1. ВВЕДЕНИЕ

Гидриды металлов используются в тепловых машинах для преобразования низкопотенциальной (до 200°С) энергии в энергию давления водорода (H₂) [1]. Реверсивный транспорт H₂ в гидридах дает возможность создания аккумуляторов H₂, компрессоров и ГТН. Гидрид располагается в гидридных реакторах (сорберах). Эффективность работы ГТН определяется эффективной работой его сорберов.

Гидридный сорбер - сложный физический объект [2]. В нем имеют место процессы: 1) фильтрации H₂ через пористую матрицу; 2) подвода и отвода теплоты от зоны гидрирования; 3) химические процессы при абсорбции-десорбции H₂ гидридом.

Исследования показывают, что процессы переноса в ГТН в основном определяются процессами теплопроводности и фильтрации водорода.

2. ЭФФЕКТИВНАЯ ТЕПЛОПРОВОДНОСТЬ ГИДРИДНЫХ СЛОЕВ

2.1. Особенности гидридных слоев

Обязательными элементами сорберов являются: корпус, гидридный наполнитель, элементы, передающие и фильтрующие водород, теплообменные элементы, запорная и регулирующая арматура.

Основным элементом сорбера является металлогидрид. Кроме физико-химических свойств он характеризуется технологией изготовления (порошок, крупка, компаунд, композит и пр.).

Для увеличения теплопроводности гидридной засыпки в нее добавляют порошки меди, алюминия. Композиты прессуются в таблетки, характеризуют коэффициентами эффективной теплопроводности и газопроницаемости. Также в гидридные порошки вставляются различные теплопроводные вставки.

2.2. Приведенные характеристики гидридных слоев

Продолжительность и интенсивность нестационарных процессов теплообмена в гидридных слоях определяют безразмерные критерии: число Фурье - Fo и число Био - Bi.

Для уменьшения физического времени протекания процессов в гидридных слоях необходимо уменьшать толщину слоя δ_{xap} и увеличивать его температуропроводность a_{Γ} .

Критерий Био определяет отношение между интенсивностями процессов внешнего теплообмена и эффективной теплопроводностью гидридной засыпки λ_{ef} . В ГТН необходимо стремиться к небольшим числам Био для проведения фронтальных химических реакций сорбции водорода.

Теплопроводность тарельчатых реакторовсорберов, реакторов с гофрированной вставкой оценивают по двухмерной модели по формулам [3]:

$$\lambda_{ef}$$
 $_{r}$ = $(a/M)(a/L)\lambda_{\rm M}$ + $\{[(M-a)/L+(a/L)(\lambda_{\rm \Gamma}/\lambda_{\rm M})^{-1}\times \times (1-a/L)]\lambda_{\rm \Gamma}/[(M-a)/L+(a/L)(\lambda_{\rm \Gamma}/\lambda_{\rm M})^{-1}]\}$ (1) для радиального расположения элементов скелета и λ_{ef} $_{a}$ = $[1-(1-a/M)^{2}(a/L)(1-\lambda_{\rm \Gamma}/\lambda_{\rm M})]\lambda_{\rm \Gamma}/[1-(a/L)(1-\lambda_{\rm \Gamma}/\lambda_{\rm M})](2)$ для аксиального расположения повторяющихся элементов скелета. Здесь a, M, L -приведенные размеры $(a$ - сторона скелета квадратного сечения, m, M - сторона элементарной ячейки, m, L - шаг элементов, $m, \lambda_{\rm \Gamma}$, $\lambda_{\rm M}$ - коэффициенты теплопроводности

Для сплошных элементов из высокотеплопроводных материалов (где $\lambda_{\rm M}>>\lambda_{\rm \Gamma}$) формулы (1), (2) упрощаются: $\lambda_{ef\ r}\approx\lambda_{\rm M}(1-\epsilon),\ \lambda_{ef\ a}\approx\lambda_{\rm \Gamma}/\epsilon$, где ϵ - пористость, определенная по отношению объема без тарелок к полному объему.

гидрида и материала скелета, Bт/(м·K).

2.3. Экспериментальное определение теплопроводности гидридных слоев

По результатам наших экспериментальных исследований порошка гидрида LaNi₅ среднее значение коэффициента эффективной теплопроводности равно $\lambda_{ef} = 1.25 \pm 0.05$ Вт/(м·К). Пористость засыпки порошка в экспериментах составила $0.5 \div 0.55$. Для порошка Zr Cr Fe_{1.2} получены значения эффективной теплопроводности на уровне 0.5 Вт/(м·К).

Для ячейки, моделирующей трубный сорбер, экспериментально получены значения эффективной теплопроводности $\lambda_{ef} = 5\pm 0.5~\mathrm{Bt/(m\cdot K)}$ с гофрированной фольгой и $1.0 \div 1.5~\mathrm{Bt/(m\cdot K)}$ без нее. В математическую модель закладывалось значение эффективной теплопроводности $\lambda_{ef} = 5.5~\mathrm{Bt/(m\cdot K)}$.

3. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАБОЧИХ ПРОЦЕССОВ В ГТН

3.1. Предварительные замечания

На первом этапе разработки ГТН целесообразно производить отбор пар гидридов при заданных интервалах рабочих температур и давлений H_2 . Выбор пар осуществляется на основе термодинамической информации - давлений H_2 на плато изотерм. Но такой подход не учитывает ряд важных характеристик ГТН: размеры и материалы сорберов, условия теплообмена с теплоносителями, способ и параметры управления работой ГТН.

Второй этап заключается в разработке точечной математической модели рабочих процессов в ГТН и оптимизации на ее основе геометрических размеров и режимов работы теплового насоса.

Модель должна учитывать основные особенности конструкции ГТН и происходящих в нем процессов: метод нагрева и снятия тепла, теплопроводность в сорберах и конструкционных элементах, перенос H_2 с выделением и поглощением тепла.

3.2. Уравнения переноса

Для описания транспорта водорода в гидридном порошке необходимо записать уравнения движения и энергии для течения газа через пористую среду. Поскольку течение водорода через пористую структуру гидрида достаточно медленное, можно записывать уравнение движения в приближении Дарси

$$\rho V \approx \operatorname{grad} P$$
.

Вторым уравнением является уравнение энергии. Для пористой системы уравнение может быть записано в следующей общей форме:

$$\rho C_p(\frac{\partial T}{\partial t} + \vec{V} \operatorname{grad} T) = \operatorname{div} \lambda \operatorname{grad} T + Q_V.$$

В правой части источниковый член учитывает теплообмен с твердой фазой и тепловыделение за счет реакций поглощения и выделения водорода.

Замыкающим уравнением является уравнение состояния в приближении идеального газа и уравнение, определяющее теплоемкость газа

$$P = (\rho RT)/\mu$$
, $C_P = dH/dT$.

Выписанные уравнения относятся к газовой фазе. Для полного описания системы их надо дополнить уравнениями, описывающими процессы передачи тепла в твердой фазе — уравнением теплопроводно-

сти с учетом теплообмена с газовой средой. Если объединить эти уравнения, можно выписать общее уравнение, описывающее процесс переноса тепла в гидридной засыпке

$$\overline{\rho}\overline{C}_p(\frac{\partial T}{\partial t} + \overrightarrow{V}\operatorname{grad}T) = \operatorname{div}\overline{\lambda}\operatorname{grad}T + \overline{Q}_V.$$

Полное уравнение переноса аналогично уравнению для газовой фазы, однако все величины рассчитываются, исходя из наличия обеих фаз с соответствующими массовыми долями. При этом необходимо ввести предположение о равенстве локальных температур H_2 и твердой фазы. Это предположение обосновывается высоким объемным коэффициентом теплоотдачи между пористой твердой фазой и заполняющим ее газом для пористых систем с малым размером частиц. Источниковый член \overline{Q}_V теперь учитывает лишь выделение или поглощение тепла из-за поглощения или выделения H_2 . Его можно выписать в явной форме

$$\bar{Q}_V = 0.5 \Delta H_f n_{Me} \frac{dx}{dt}$$

где dx/dt -скорость изменения состава гидридной фазы.

3.3. Упрощение уравнения движения

Для условий работы сорберов ГТН обоснованным является упрощение уравнений движения водорода до простого условия равенства давления по объему сорберов, а при отсутствии клапанов между сорберами - и по всему объему ГТН: P = const. Условием, определяющим давление водорода в системе при известных полях температур, является сохранение полного количества водорода в ГТН

$$N_h^0 = N_{hydr}^1 + N_{hydr}^2 + 2N_{H_2}^1 + 2N_{H_2}^2.$$

3.4. Кинетика реакций «водород-гидрид»

Для расчета теплового режима гидрида необходимо определять скорость выделения или поглощения H_2 . Процессы сорбции являются гетерогенными химическими реакциями. При высоких температурах времена реакций малы (\sim 1-10 с), что может служить основанием для использования допущения о равновесном характере процессов сорбции и десорбции H_2 . Состав твердой фазы и давление H_2 над ней связаны равновесным соотношением (равновесными изотермами) для данного гидрида

$$P = P_{eq}(x,T)$$
.

Допущение может нарушаться при низких температурах. Для учета кинетики реакции предложено уравнение $dx/dt = K(P-P_{eq})$, в котором скорость реакции зависит от температуры по закону Аррениуса и стремится к нулю при приближении давления H_2 над гидридной фазой к равновесному

значению P_{eq} . Значения параметров константы скорости $K = K_0 \exp(-E/RT)$ - предэспоненциального множителя K_0 и энергии активации E, определяются из экспериментов по насыщению или десорбции H_2 при низких температурах.

3.5. Учет особенностей Р-С-Т кривых

Метод расчета зависит от наличия однозначного соответствия между давлением H_2 и составом твердой фазы. Первый случай вычислений реализуется, если система является однофазной, или равновесные изотермы имеют наклон. Во втором случае система является двухфазной с горизонтальным участком изотерм, состав обеих фаз и давление H_2 над ними определяются только температурой.

С вычислительной точки зрения задача определения состояния сорберов, когда один из них находится в двухфазной области на горизонтальном плато, проще, т.к. не нужно решать нелинейные уравнения для определения давления в системе. Однако усложняется логическая схема программы из-за необходимости рассмотрения и правильного выбора различных комбинаций состояния водорода в конденсированных фазах.

При учете гистерезиса поглощения (выделения) водорода алгоритм расчета состава фаз, их температур и давления водорода усложняется. Возникают следующие случаи:

- давление водорода выше давления абсорбции и ниже давления десорбции (при различных температурах сорбции), т.е. один гидрид поглощает, а другой выделяет водород;
- для обоих гидридов состав находится внутри петли гистерезиса. При этом состав не меняется, давление водорода находится из разности между полным его количеством и известным количеством водорода в гидридах;
- один из гидридов может поглощать или выделять H_2 , а другой нет. В этом случае расчет давления ведется аналогично первому случаю, но состав определяется только для гидрида (он может изменяться). Количество H_2 в «свободном» гидриде и газовой фазе находится как разность между полным количеством и количеством H_2 в другом гидриде.

3.6. Модель одномерного обмена в ГТН

Были рассмотрены точечная и одномерная модель ГТН, в которой учитываются только радиальные распределения температур и концентраций H₂ [4-6]. В этой модели пренебрегается аксиальным переносом тепла по самой гидридной засыпке по сравнению с радиальным переносом, а также изменением температуры теплоносителя во внешнем тракте по длине канала. В рассматриваемом приближении система уравнений имеет вид

$$\rho C_p(\frac{\partial T}{\partial t} + v \frac{\partial T}{\partial r}) = \operatorname{div}(\lambda_{ef} \operatorname{grad} T) + 0.5 N_S dH \frac{\partial x}{\partial t}.$$

Используется допущение о постоянстве давления водорода по объему ГТН и условие сохранения количества водорода в системе.

Hачальные условия: в начальный момент времени задаются постоянные профили температур и концентраций H_2 , исходя из условий зарядки сорберов по изотермам гидридных материалов. В качестве начальных данных может быть задано исходное давление H_2 в системе и температуры гидридов: $P = P_0, T_1(r,0) = T_1, T_2(r,0) = T_2$.

Тогда содержание водорода в сорберах в начальный момент находится из условия равновесия $x_1 = x_{1,eq}(P,T_1), x_2 = x_{2,eq}(P,T_2).$

На внешней поверхности цилиндрических трубок задаются условия теплообмена по Ньютону в соответствии с параметрами теплообмена во внешних трактах. В расчетах учитывалось наличие стенок, в которых решалось радиальное уравнение теплопроводности, аналогичное уравнению для гидридов, но без конвективных членов и тепловыделения. На внутренней поверхности рассчитывался тепловой поток, связанный с вдувом H_2 , имеющего температуру другого сорбера.

4. МЕТОД РЕШЕНИЯ И НЕКОТОРЫЕ РЕЗУЛЬТАТЫ

4.1. Метод решения

Для решения сформулированной задачи использовался разностный метод. Уравнения переноса аппроксимировались разностными соотношениями на двухслойной неявной шеститочечной разностной сетке и решались методом прогонки. Для учета нелинейного характера уравнений, связанного со сложной зависимостью равновесных давлений водорода над гидридами от состава и температуры, использовались итеративные схемы. Для проверки выполнения условия сохранения количества водорода в системе применялось численное интегрирование с параболической аппроксимацией профилей температур и концентраций. Нелинейное уравнение для определения давления водорода на каждом временном слое решалось численно с помощью обобщенного метода Ньютона.

Для использования в компьютерных программах экспериментальные данные по зависимости $P=P_{eq}(x, T)$ аппроксимировались аналитическими выражениями.

4.2. Результаты

Управление работой ГТН осуществлялось путем задания времен полуциклов. В расчетах определялась временная циклограмма работы ГТН: температуры конструктивных элементов, содержание H_2 в сорберах, давление H_2 , тепловые потоки к теплоносителю и энергетические параметры - длительность цикла, тепловая мощность, эффективность.

Разработанная математическая модель была

применена для расчетов процессов в ГТН, предназначенных для кондиционирования воздуха в автомобиле [5], получения или перегретой воды (на уровне 110°С), или холода (на уровне 0°С) [6]. Было проведено исследование влияния режимных параметров ГТН на его энергетические характеристики. Расчетные данные удовлетворительно совпали с экспериментальными результатами. На рис. 1,2 представлены некоторые характерные зависимости работы ГТН.

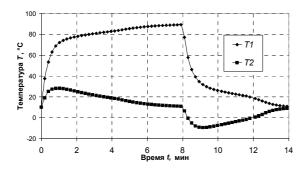


Рис.1. Циклограмма изменение температуры модуля: T_1 - высокотемпературный сорбер, $^{\circ}$ С; T_2 - низкотемпературный сорбер, $^{\circ}$ С

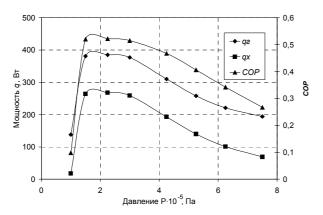


Рис.2. Влияние начального давления водорода на энергетические характеристики модуля ГТН: q_{Γ} - осредненная мощность теплоты, поступившей в ВТГ, Вт; q_{X} - осредненная мощность холода, отведенного от НТГ, Вт; COP - эффективность модуля (отношение энергии, отведенной от НТГ Q_{X} к энергии подведенной к ВТГ Q_{Γ})

ЗАКЛЮЧЕНИЕ

Проектирование гидридных реакторов является сложной теплофизической задачей. Она может быть решена при комплексном подходе к проектированию с помощью математического моделирования, технологической и экспериментальной отработки узлов ГТН.

СПИСОК ОБОЗНАЧЕНИЙ

Р - давление, Па;

 C_p - теплоемкость сорбера, Дж/(кг·К);

dH, ΔH_f - теплота абсорбции водорода, Дж/кг;

N - количество водорода в сорбере, кг;

 $n_{Me},\ N_{
m S}$ - плотность металлической подрешетки гидрида, по отношению к которой определяется состав $x=n_{
m H}/n_{
m Me}$ твердой фазы, кг/м 3 ;

x - концентрация водорода, г-атом $H_2/(моль сплава)$;

 N_{hydr} - количество водорода в гидриде, кг;

 $N_{\rm H_2}$ - количество водорода в газовой фазе в соответствующих сорберах, кг;

 λ_{w} -теплопроводность материала стенки, $BT/(M \cdot K)$;

T - температура сорбера, ${}^{\circ}$ С, K;

t – время, с, мин;

 $\lambda_{\it ef}$ - коэффициент эффективной теплопроводности гидридного слоя, ${\rm Br}/({\rm m}\cdot{\rm K});$

 $C_{\rm pH_2}$ - теплоемкость водорода, Дж/(кг·К);

V – скорость H_2 , м/с;

 δ_{xap} - характерный размер (толщина) гидридного слоя, м; α - коэффициент теплоотдачи при внешнем теплообмене гидридного сорбера, $Bt/(m^2 \cdot K)$;

Fo = $a_{\Gamma} t / \delta^{2}_{xap}$ – число Фурье;

Bi = $\alpha \delta_{\text{хар}} / \lambda_{ef}$ – число Био;

 $a_{\Gamma} = \lambda_{ef} / C_{p} \rho$ - коэффициент температуропроводности гидридного слоя с характерным размером δ_{xap} , м²/с; ρ - плотность, кг/м³.

СПИСОК ЛИТЕРАТУРЫ

- Suda S. Energy conversion systems using metal hydride // Z. für Physikalische Chemie Neue Folge. 1989. Bd.164. S.1463-1474.
- Создание малогабаритных холодильных установок с металлогидридным тепловым насосом/ Б.А. Астахов Б.А., Бокало С.Ю., Ижванов Л.А. и др. // Hydrogen Material Science and Chemistry of Metal Hydriedes: Ab. 6th NATO Int.Conf. ICHMS'99. Katsiveli, Ukraine, September 02-08, 1999. P.306-307.
- 3. Suda S., Komazaki Y. and Kobajashi N. Effective thermal conductivity of metal hydride beds // J. of Less-Common Metals. 1983. V.89. P.317-324.
- Fedorov E.M., Izhvanov L.A. and Shanin Yu.I. Simulation of hydride heat pump operation // Int. J. Hydrogen Energy. 1999. V.24. P.1027-1032.
- Shanin Yu.I. Simulation of hydride heat pump operation with reference to vehicle refrigerating devices/ By editors T.N. Veziroglu, S.Y. Zaginaichenko, D.V. Schur, V.I. Trefilov // Hydrogen Materials Science and Chemistry of Metal Hydrides. NATO science series. Series II: Mathematics, Physics and Chemistry. Kluwer Academic Publishers, 2002. V. 82. P.97-106.
- Shanin Yu.I. Simulation of operation heat or cold-making unit with hydride pump /By editors T.N. Veziroglu, S.Y. Zaginaichenko, D.V. Schur, B. Baranowski, A.P. Shpak, V.V. Skorokhod // Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO science series. Series II: Mathematics, Physics and Chemistry. Kluwer Academic Publishers, 2004. V. 172. P.233-242.