С.В. Резник, П.В. Просунцов, В.П. Тимошенко

Московский государственный технический университет им. Н.Э. Баумана, Россия

МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ТЕПЛООБМЕНА В ПОРИСТЫХ МАТЕРИАЛАХ ТЕПЛОВОЙ ЗАЩИТЫ МНОГОРАЗОВЫХ КОСМИЧЕСКИХ АППАРАТОВ

АННОТАЦИЯ

Исследование закономерностей теплообмена в пористых материалах имеет большое значение в связи с проектированием теплозащитных покрытий для перспективных многоразовых космических аппаратов. При постановке таких исследований необходимо учитывать комбинированный характер теплообмена в пористых материалах. Рассматриваются вопросы математического обеспечения тепловых испытаний образцов материалов и элементов конструкций в условиях, воспроизводящих условия полета. Раскрываются возможности комплекса программ САR, предназначенного для решения прямых и обратных задач радиационно-кондуктивного теплообмена и теплопроводности.

1. ВВЕДЕНИЕ

В настоящее время известно около 50 проектов многоразовых космических аппаратов (МКА), предназначенных для суборбитальных полетов, а также вывода полезных грузов на орбиту и их возвращения на землю. Центральная проблема любых МКА проблема тепловой защиты [1, 2]. При всем разнообразии концепций теплозащитных покрытий (ТЗП) во всех МКА предусматривается использование легких термостабильных материалов, производимых из волокон оксидов кремния, алюминия, а также в виде керамических или металлических пен. Эти материалы имеют высокую пористость и, в ряде случаев, наследуют частичную прозрачность от материала волокон и частиц. Теплообмен в пористых материалах осуществляется одновременно теплопроводностью, излучением и конвекцией. Оптические неоднородности, какими являются границы волокон или частиц, вызывают сильное рассеивание теплового излучения.

Основой исследования процессов теплообмена в пористых материалах ТЗП МКА служат математическое и физическое моделирование и методология обратных задач (ОЗ).

2. ОСОБЕННОСТИ ТЕПЛОВОЙ ЗАЩИТЫ МНОГОРАЗОВЫХ КОСМИЧЕСКИХ АППАРАТОВ

2.1. Программы полета и тепловые нагрузки

Условия теплового нагружения перспективных МКА зависят от их назначения и программ полета (табл. 1).

Таблица 1	 Характе 	ристика	тепловых	нагру	/30К

		Максималь-	Макси-
		ная плот-	мальный
Класс МКА	τ, c	ность тепло-	уровень
		вого потока	температур
		$q_{W} \cdot 10^{-4}$, Bt/m ²	<i>Т</i> _{<i>w</i>} , К
Суборбитальные	$n \cdot 10^2$	До 10	До 1000
Орбитальные	$n \cdot 10^3$	До 10 ²	1500—2000

Для суборбитальных аппаратов продолжительность аэродинамического нагрева т лежит в диапазоне нескольких сотен секунд, для орбитальных — несколько тысяч секунд. Так, по оценкам разработчиков проекта Da Vinchi [3] аппарат Wild Fire Mk VITM с ракетной ступенью и сферической капсулой для экипажа, стартующий с аэростата на высоте 24.4 км, способен достичь высоты 116 км за 180 с. На нисходящем участке траектории общей продолжительностью около 250 с на высоте 42.5 км максимальная плотность теплового потока в точке торможения капсулы составит 7.4·10⁴ BT/M², а максимальная температура поверхности может приблизиться к 920 К.

Для МКА орбитального класса тепловые нагрузки на этапе спуска значительно выше. Для МКА Space Shuttle и Буран максимальная величина плотности теплового потока в точке торможения на носовом коке достигала $50 \cdot 10^4$ Вт/м², а темп нагрева плиточного ТЗП до равновесной температуры 1500 К был равен 4 К/с [2]. Близкие значения тепловых нагрузок ожидаются для перспективных МКА. Например, по расчетам [4] при входе в атмосферу на наветренной стороне одноступенчатого орбитального МКА типа Venture Star максимальная плотность теплового потока составит $12 \cdot 10^4$ Вт/м² при продолжительности спуска около 2000 с.

Если ориентироваться на ТЗП с металлическим корпусом или плитки, то по соображениям термостабильности температура не должна превышать 1500 К. Однако для некоторых компоновок крылатых ступеней МКА наиболее высокие нагрузки ожидаются на режимах взлета с максимальным уровнем температуры на острых кромках крыльев и воздухозаборников до 2500 К [5].

Гораздо менее ясна картина с тепловыми нагрузками МКА при нештатных ситуациях. Изменение конфигурации аппарата в результате столкновений с другим(и), аварий на борту, отказы системы управления и тормозной двигательной установки могут стать причиной перехода на траекторию баллистического спуска и сопровождаться быстрым ростом тепловых и механических нагрузок. В таких ситуациях стойкость силовой конструкции ограничена десятками секунд и для принятия решений нужна информация о работе материалов ТЗП не только при высоких температурах, но и при высоких скоростях нагрева.

2.2. Пористые материалы тепловой защиты

Для ТЗП МКА предпочтительны технологичные материалы, имеющие низкие плотность и теплопроводность, высокую термическую стойкость, умеренную стоимость. В конструкциях первого поколения МКА пористые материалы применялись в плиточной и гибкой тепловой защите, а также в качестве теплоизоляции топливных баков с криогенными компонентами. Допустимая температура для отечественных и зарубежных материалов плиточной тепловой защиты МКА Space Shuttle и Буран (табл. 2) была равна 1520 К [2].

Название материала (страна)	Химический состав	Плотность материала р, кг/м ³
LI-900 (CIIIA)	SiO ₂	144
ТЗМК-10 (Россия)	SiO ₂	150
LI-2200 (CIIIA)	SiO ₂	350
ТЗМК-25 (Россия)	SiO ₂	250
Перспективные (США, Европа, Россия)	SiO _{2,} Al ₂ O ₃	24—200

Таблица 2. Пористые материалы тепловой защиты

Для перспективных МКА актуально увеличение стойкости ТЗП к механическим повреждениям при одновременном уменьшении погонной массы и стоимости межполетного обслуживания. Значительные силы направлены на разработку теплозащитных панелей с металлическим корпусом, заполненным пористым материалом с $\rho < 100$ кг/м³ [5, 6].

2.3. Подходы к проектированию

Для проектирования ТЗП с оптимальными массово-геометрическими и экономическими характеристиками необходимы надежные данные по теплофизическим свойствам материалов. ТЗП из пористых материалов в настоящее время проектируются, как правило, с использованием математических моделей эффективной теплопроводности (ЭТ). Между тем, коэффициент ЭТ λ_{eff} — не свойство материала, а характеристика совокупного теплообмена в определенных условиях взаимодействия исследуемого образца с окружающей средой.

Неоднократно предпринимались попытки связать λ_{eff} с плотностью р или пористостью материала и температурой. К сожалению, корреляция между р и λ_{eff} не столь очевидна, как иногда кажется, из-за изменения роли отдельных составляющих теплооб-

мена при изменении плотности. В материалах с $\rho < 100 \ {\rm kr/m}^3$ основную роль в суммарном теплопереносе играет тепловое излучение, а в более плотных — теплопроводность пористого каркаса. Для понимания роли тепловой радиации в суммарном теплообмене важно знать распределение температуры в слое пористого материала. В связи с исследованиями новых пористых материалов для ТЗП МКА можно сформулировать ряд вопросов:

- при каких условиях (режимы нагрева, свойства материалов, размеры образцов и т.д.) роль излучения в суммарном теплообмене в материале преобладает или пренебрежимо мала в широком диапазоне температур?
- каковы температурные зависимости эффективной теплопроводности пористых материалов в широком диапазоне скоростей нагрева?

Ответы на эти вопросы могут быть получены с помощью методов идентификации параметров теплообмена [7].

3. ИДЕНТИФИКАЦИЯ ПАРАМЕТРОВ КОМБИНИРОВАННОГО ТЕПЛООБМЕНА В ПОРИСТЫХ МАТЕРИАЛАХ

3.1. Тепловые испытания и идентификация параметров теплообмена

Воспроизведение условий полета МКА на земле в полном объеме — чрезвычайно сложная задача. Вместе с тем, вполне реально воспроизведение требуемых уровней температуры, темпов нагрева с обеспечением локального подобия тепловых процессов в натурных элементах и предметных моделях. Необходимые плотности тепловых потоков могут быть созданы с помощью галогенных ламп накаливания, дуговых источников излучения, солнечных концентраторов, жидкостных генераторов газа и плазмотронов. Выбор тех или иных средств должен быть увязан с методами и средствами обработки экспериментальных данных, в первую очередь с методами идентификации параметров теплообмена, опирающихся на решение обратных задач.

Активная разработка методов и алгоритмов решения ОЗ ведется более 40 лет, однако эти ресурсы пока не нашли в полной мере приложения к исследованию пористых материалов, работающих в условиях нестационарного радиационно-кондуктивного теплообмена (РКТ) при значительном изменении давления. Подавляющее большинство постановок ОЗ — одномерны.

В нашей стране и за рубежом наиболее точные методы определения λ_{eff} пористых материалов реализованы на экспериментальных установках, в которых теплообмен образца стационарный одномерный. Обработка экспериментальных данных ведется с помощью формул, вытекающих из решения естественно регуляризованных линейных ОЗ. Особенность таких методов — испытание крупногабаритных образцов и большая длительность испытаний. Например, в установке [8], отвечающей стандарту

ASTM C201, действующему в США, образцы пористых материалов должны иметь размеры в пределах 228×228×13,2 мм³, а длительность наступления стационарного теплового режима составляет от одного до двух часов.

На ранних стадиях проектирования, когда количество материалов ограничено, да к тому же необходимо воспроизвести условия быстрого нагрева, логично испытывать малоразмерные образцы, а обработку данных вести с помощью решения многомерных ОЗ, обеспечивающих требуемую точность результатов [9]. При постановке таких ОЗ должны быть учтены следующие особенности:

• комбинированный характер теплообмена в широком диапазоне изменения параметров (температура, давление, градиенты температуры, темпы нагрева/охлаждения);

• неодномерный характер теплообмена образцов, обусловленный их ограниченными размерами, применением локализованных источников энергии (концентрированные потоки излучения, плазменные струи); сложная структура экспериментальных образцов — натурных элементов ТЗП или специально приготовленных элементов с оснасткой и вспомогательными экранами, защищающими материал от действия прямых потоков теплого излучения или струй горячего газа (плазмы);

 измерение температуры в объеме датчиками, обладающими иными по сравнению с исследуемым материалом оптическими и теплофизическими свойствами.

3.2. Средства параметрической идентификации

Важные аспекты теории и методов математического моделирования РКТ раскрыты в фундаментальных работах [10—12]. В МГТУ им. Н.Э. Баумана с конца 1970-х годов разрабатываются методы, алгоритмы и программы для решения прямых и обратных задач РКТ и ЭТ в телах из пористых и композиционных материалов [13—16]. Программы решения ОЗ, вошедшие в пакет САR (табл. 3), позволяют экономичным образом обрабатывать экспериментальные данные с учетом особенностей

	, 1		
№	Форма образца. Материал. Постановка ОЗ. Начало применения	Измеряемые величины / Искомые пара- метры	Особенности метода решения обратной задачи теплообмена
1.	Пластина, полый и сплош- ной цилиндры. Частично прозрачный. Одномерная ОЗ РКТ для стационарного теплообмена. С 1984 г.	Тепловой поток и температура на обеих поверхностях образца / Коэффициент молекулярной теплопроводности λ	Конечно-разностный метод ре- шения прямой задачи. Однопара- метрический метод оптимизации (DSC-Пауэлла)
2.	Пластина. Частично про- зрачный. Одномерная ОЗ РКТ для регулярного тепло- обмена. С 1984 г.	Температуры на обеих поверхностях и в центре образца / Коэффициент молеку- лярной теплопроводности λ.	Аналогично п. 1
3.	Пластина, полый и сплош- ной цилиндры. Частично прозрачный или непрозрач- ный. Одномерная ОЗ РКТ или ОЗТ для нестационар- ного теплообмена. С 1984 г.	Температуры в нескольких точках внутри образца или температура в одной точке внутри образца и тепловой поток на одной из его поверхностей / Одновременно λ (<i>T</i>) или λ_{eff} (<i>T</i>) и <i>C</i> (<i>T</i>)	Конечно-разностный метод ре- шения прямой задачи. Многопараметрический метод сопряженных градиентов с реше- нием вспомогательной задачи в конечно-разностной форме
4.	Пластина. Частично про- зрачный. Одномерная ОЗ переноса излучения. С 1984 г.	Спектральное пропускание или отраже- ние нескольких образцов различной толщины / Одновременно k _ν и β _ν	Конечно-разностный метод ре- шения прямой задачи. Двупараметрическая оптимиза- ция для каждого участка спектра
5.	Пластина. Частично про- зрачный или непрозрачный, ортотропный. Двумерная ОЗ РКТ или ОЗТ для нестационарных усло- вий теплообмена. С 2003 г.	Температуры в нескольких точках внутри образца или в двух точках в образце и тепловой поток на одной из его поверхностей / Одновременно λ_{x1} (<i>T</i>), λ_{x2} (<i>T</i>) или $\lambda_{x1, \text{ eff}}$ (<i>T</i>), $\lambda_{x2, \text{ eff}}$ (<i>T</i>) и <i>C</i> (<i>T</i>)	Конечно-элементный метод реше- ния прямой задачи. Многопара- метрический метод сопряженных градиентов с решением вспомога- тельной задачи в аналитической форме. Векторный метод для выбора шагов минимизации
6.	Пластина, полый и сплош- ной цилиндры. Частично прозрачный. Одномерная ОЗ РКТ для нестационарных условий теплообмена. С 2005 г.	Температуры в нескольких точках внутри образца или в одной точке в образце и тепловой поток на одной из поверхно- стей / Одновременно λ (<i>T</i>), <i>C</i> (<i>T</i>), <i>k</i> (<i>T</i>) и $\beta(T)$	Аналогично п. 5
7.	Пластина. Непрозрачный. Одномерная ОЗТ для неста- ционарных условий им- пульсного нагрева лазером. С 2005 г.	Температура на тыльной поверхности образца / Одновременно λ и С	Конечно-разностный метод ре- шения прямой задачи. Остальное аналогично п. 5

Таблица 3. Пакет программ CAR для решения прямых и обратных задач теплообмена

их получения (способ нагрева, форма образца, режим теплообмена, термометрическая схема и др.). Общими признаками подходов к построению программ пакета являются: численные методы решения прямых задач, экстремальная постановка обратных задач, численные методы оптимизации целевых функционалов, связывающих расчетные и экспериментальные значения тепловых величин, итерационная регуляризация.

Пакет использовался для исследования материалов плиточного ТЗП корабля «Буран» и был усовершенствован при выполнении проектов INTAS 94-700/701 и 00-0652. Судя по предшествующему опыту [15—17], пакет САR может служить основой для исследований пористых материалов перспективных МКА в диапазоне температур 300...2000 К, давлений 1...10⁵ Па, скоростей нагрева 0...50 К/с.

ЗАКЛЮЧЕНИЕ

Разработанные средства параметрической идентификации теплообмена обеспечивают возможность исследований теплофизических свойств материалов ТЗП МКА на различных типах экспериментальных установок и стендов в широком диапазоне температур, давлений и скоростей нагрева.

Работы выполняются при финансовой поддержке РФФИ по проекту 05-08-33573.

СПИСОК ОБОЗНАЧЕНИЙ

МКА — многоразовый космический аппарат;

- ТЗП теплозащитное покрытие;
- ЭТ эффективная теплопроводность;
- РКТ радиационно-кондуктивный теплообмен;
- λ коэффициент молекулярной теплопроводности, Вт/(м·К);
- λ_{eff} коэффициент эффективной теплопроводности, Вт/(м·К);
- C объемная теплоемкость, Дж/(м³·К);
- k коэффициент поглощения, м⁻¹;
- β коэффициент рассеивания, м⁻¹;

 τ — продолжительность аэродинамического нагрева, с. Индексы:

v — частота.

СПИСОК ЛИТЕРАТУРЫ

- 1. Материалы и покрытия в экстремальных условиях. Взгляд в будущее: В 3 т. Т.1. Прогнозирование и анализ экстремальных воздействий / Ю.В. Полежаев, С.В. Резник, Э.Б. Василевский и др. М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. 224 с.
- Гофин М.Я. Жаростойкие и теплозащитные конструкции многоразовых аэрокосмических аппаратов. М.: Изд-во ЗАО «ТФ «МИР», 2003. 672 с.

- Da Vinci X-Prize Space Project Mission Analysis / V. Kudriavtsev, B. Feeney, M. Buneta et all // Proc. 3-rd Intern. Symp. on Atmospheric Re-entry Vehicles and Systems (Arcachon, France, 24—27 March, 2003). 28 p.
- Научные основы технологий XXI-века / Под общ. ред. А.И. Леонтьева, Н.Н. Пилюгина, Ю.В. Полежаева, В.М. Поляева. М.: УНПЦ «Энергомаш», 2000. 136 с.
- Reusable Metallic Thermal Protection Systems Development / M.L. Blosser, C.J. Martin, K. Daryabeigi, C.C. Poteet // Proc. 3-rd European Workshop on Thermal Protection Systems (Noordwijk, The Netherlands, March 25—27, 1998). 12 p.
- Metallic Thermal Protection System Technology Development Concepts, Requirements and Assessment Overview / J.T. Dorsey, C.C. Poteet, R.R. Chen, K.E. Wurster // Proc. 40-th Aerospace Sciences Meeting and Exhibit (Reno, NV, January, 14—17, 2002). 22 p.
- Основы идентификации и проектирования тепловых процессов и систем / О.М. Алифанов, П.Н. Вабищевич, В.В. Михайлов и др. М.: Логос, 2001. 400 с.
- Daryabeigi K. Thermal Analysis and Design of Multi-Layer Insulation for Re-Entry Aerodynamic Heating // Proc. 35-th AIAA Thermophysics Conference (Anaheim, CA, June 11—14, 2001). 9 p.
- Prosuntsov P.V. Parametrical Identification of Two-Dimensional Radiative and Conductive Heat Transfer Processes // Proc. of 4-th Intern. Conference on Inverse Problems: Identification, Design and Control (Moscow, Russia, July 2—6, 2003). 8 p.
- 10. Оцисик М.Н. Сложный теплообмен. М.: Мир, 1976. 616 с.
- 11. Петров В.А., Марченко Н.В. Перенос энергии в частично прозрачных твердых материалах. М.: Наука. Сиб. отд-ние, 1985. 190 с.
- 12. Рубцов Н.А. Теплообмен излучением в сплошных средах. Новосибирск: Наука. Сиб. отд-ние, 1984. 278 с.
- 13. Михалев А.М., Просунцов П.В., Резник С.В. Математические модели и пакет программ решения прямых и обратных задач радиационно-кондуктивного теплообмена // Радиационный теплообмен в технике и технологии: Тр. 6-й Всесоюз. науч.-техн. конф. Каунас, 1987. С.83—84.
- 14. Математико-алгоритмическое и программное обеспечение исследования процессов радиационнокондуктивного теплообмена / С.В. Резник, П.В. Просунцов, А.М. Михалев, Д.Ю. Калинин // Передовые термические технологии и материалы. М.: Изд-во МГТУ им. Н.Э. Баумана, 1999. Ч. 2. С. 40—49.
- 15. Резник С.В. Математические модели радиационнокондуктивного теплообмена в материалах тепловой защиты многоразовых транспортных космических систем // ИФЖ. 2000. Т. 73. №. 1. С. 11—25.
- Reznik S.V. Modeling and Inverse Problems of Radiative and Conductive Heat Transfer // Proc. Eurotherm Seminar 68 (Poitiers, France, March 5—7, 2001). P. 23—36.
- 17. Экспериментальное исследование теплопереноса в пористых полупрозрачных материалах / Л.Я. Падерин, П.В. Просунцов, С.В. Резник, В.П.П. Фишер // ИФЖ. 2005. Т. 78. № 1. С. 60—66.