Б.Г. Покусаев, А.К. Некрасов, Д.А. Некрасов

Московский государственный университет инженерной экологии, Россия

ВСКИПАНИЕ НЕДОГРЕТОЙ ВОДЫ В КОЛЬЦЕВОМ КАНАЛЕ С ЗЕРНИСТЫМ СЛОЕМ ПРИ ИМПУЛЬСНОМ ТЕПЛОВЫДЕЛЕНИИ

АННОТАЦИЯ

Приведены результаты математического моделирования вскипания недогретой воды в кольцевом канале при импульсном тепловыделении. Исследуется процесс образования и роста паровых пузырьков до момента их слияния в паровую пленку с учетом реальной шероховатости поверхности и времени активации соответствующих центров парообразования от температуры поверхности. Используется микрослоевая модель с учетом образования сухого пятна под пузырьком. Решается также задача о формировании волны давления в кольцевом канале вследствие взрывного вскипания перегретого микрослоя под пузырьками. Представлены результаты анализа влияния зернистого слоя на перегретый пристенный слой жидкости.

1. ВВЕДЕНИЕ

Исследованию динамических процессов при вскипании недогретой жидкости посвящено значительное число работ, из которых следует, что определяющую роль в них играет скорость изменения температуры поверхности нагрева. В экспериментальной работе [1] выполненной на вертикальном кольцевом канале при импульсном подводе электрической мощности к внутренней обогреваемой трубке, исследовался кризис кипения воды при различных давлениях, темпах изменения температуры стенки нагревателя и начальных недогревах воды.

В связи с постоянно растущим интересом к проблеме микротвэльных водоохлаждаемых реакторов [2], в опытах [1] исследовалась также роль шаровых засыпок в процессах вскипания. Во всех случаях в экспериментах фиксировалось формирование волн давления в канале. Опыты также показали, что наличие шаровой засыпки приводит к заметному отличию в поведении волны давления. В результате детального изучения этого явления, в том числе с помощью скоростной видеосъемки, была предложена физическая модель процесса, в которой рост давления связывается с формированием и движением границы паровой пленки. В представленной работе предпринята попытка математического описания этих сложных процессов.

2. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

При моделировании описанных выше процессов выделим основные последовательно сменяющие друг друга стадии [3]: прогрев пристенной области до температуры насыщения, образование и рост пузырьков пара на поверхности нагревателя в недогретой жидкости, формирование и распространение волны давления в канале. Первая стадия процесса, включая расчеты с различными засыпками, подробно описана в работе [4]. Результатом расчетов здесь является время прогрева и распределения температур на момент начала образования пузырьков как в чистой жидкости, так и в присутствии шаровой засыпки.

2.1. Задача о росте и развитии пузырька пара на поверхности нагревателя

Вторая стадия является наиболее сложным и многофакторным процессом, поскольку рост пузырьков пара на поверхности нагревателя в условиях нестационарного разогрева стенки, несмотря на большое количество экспериментальных и теоретических работ, посвященных этой проблеме, является слабоизученным явлением.

В настоящей работе приводятся результаты численного моделирования процесса возникновения и роста пузырьков пара до момента их слияния в паровую пленку.

Для расчета времени покрытия пузырьками пара поверхности нагрева необходимо знать распределение размеров микрошероховатостей, которые определяют начальные радиусы пузырьков, и необходимый перегрев для начала их роста. Принимаем [5], что шероховатость поверхности подчиняется нормальному закону распределения. Выбираем несколько интервалов с одинаковым шагом и находим среднее значение шероховатости на данном отрезке функции. Вычисляем вероятности попадания величины в выбранные интервалы. Далее рассчитываем площади поверхности впадин для каждого размера шероховатости, принимая угол при вершине впадины ≈90° и определяем доли, занимаемые каждым типом впадин на единице поверхности (1 см²). Результаты вычислений количества впадин для 7 класса точности поверхности приведены в табл. 1.

Таблица 1. Зависимость числа впадин от глубины

Глубина впадины, мкм	Число впадин, <i>n</i> ·10 ⁸
0,56	0,5178
1,4	1,198
2,3	1,627
3,2	1,198
4,04	0,5178

Связь перегрева жидкости с геометрией впадины находится из условия теплового равновесия зародыша, находящегося в перегретом слое жидкости и определяется по формуле:

$$T_w = \frac{2\sigma T_s}{r\rho_v R_c} + T_s . \tag{1}$$

При моделировании процесса роста пузырька используется микрослоевая модель [6]. Целями расчета здесь являются зависимости скорости роста пузырька и объема микрослоя от темпа тепловыделения и величины недогрева жидкости с учетом образования сухого пятна под пузырьком. Расчетная схема задачи показана на рис. 1.

Рис. 1. Расчетная схема для пузырька в заключительной стадии роста с учетом сухого пятна

Для вычисления скорости роста пузырька используется уравнение теплового баланса:

$$L\frac{dm}{dt} = \int_{S} qdS .$$
 (2)

Распределения плотности тепловых потоков *q* при росте пузырька в пристенном слое с неоднородной по толщине и переменной по времени температурой находятся из решения задачи определения температурного поля жидкости, окружающей растущий пузырек и включающей следующие уравнения:

$$(c_p \rho)_1 \left(\frac{\partial T_1}{\partial \tau} + u \frac{\partial T_1}{\partial r} \right) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(\lambda_1 r^2 \frac{\partial T_1}{\partial r} \right) + \frac{1}{r^2 \sin \varphi} \frac{\partial}{\partial \varphi} \left(\sin \varphi \frac{\partial T_1}{\partial \varphi} \right),$$

$$(3)$$

rge
$$u = \frac{\partial K_1}{\partial \tau};$$

 $\left(c_p \rho\right)_2 \frac{\partial T_2}{\partial \tau} = \frac{1}{r} \frac{\partial}{\partial r} \left(\lambda_2 r \frac{\partial T_2}{\partial r}\right) + \frac{\partial}{\partial x} \left(\lambda_2 \frac{\partial T_2}{\partial x}\right) + q_v,$
(4)

где 0 < r < R; $0 < \phi < 90^{\circ}$; $0 < x < \delta$; $0 < \tau < t$;

Начальное условие: $T_1 = T_2 = T_0$; Граничные условия: $T_1 = T_{\text{sat}}$ при $r = R_1$, $0 < \phi < \phi_1$ и $\phi = \phi_1$; $0 < r < R_1$

$$T_1 = T_2 \quad \mathbf{и} \quad \frac{1}{r} \frac{\partial T_1}{\partial \varphi} = \frac{\partial T_2}{\partial x} \quad при \quad (\varphi = 90^0) \land (x = 0);$$

На остальных границах $\frac{\partial T}{\partial n} = 0$.

По мере испарения микрослоя под пузырьком образуется сухое пятно. Принимаем, что интенсивность теплообмена между паром и поверхностью нагревателя значительно меньше, чем на остальных поверхностях пузырька (при $\phi = \phi_1$, $R_2 < r < R_1$ и $r = R_1$, $0 < \phi < \phi_1$), на которых происходит фазовый переход, поэтому в расчете поверхность сухого пятна по отношению к пару полагаем теплоизолированной.

Для равновесного состояния пара в пузырьке, на основании уравнения состояния

$$pV = mBT , (5)$$

где $V = \frac{2}{3}\pi R^3$, и принимая, что давление в пузырь-

ке слабо отличается от давления в жидкости, а температура T равна температуре насыщения T_S при данном давлении, для вычисления текущего радиуса пузырька можно получить следующее выражение:

$$R_1 = \sqrt[3]{\frac{3}{2\pi} \frac{mBT_S}{p}},\tag{6}$$

где

1

$$n = \frac{1}{L} \iint_{\tau s} q dS d\tau .$$
⁽⁷⁾

Задача решалась численно методом конечных разностей в программной среде Visual Fortran 6.6. В начале решались уравнения энергии (для жидкости) при и=0 (для нагревателя) методом суммарной аппроксимации [7] с использованием неявной конечно-разностной схемы. При достижении температурой поверхности заданного перегрева относительно температуры насыщения, на основании найденного температурного поля определялось распределение тепловых потоков q по поверхности пузырька начального радиуса R_0 . По формуле (6) рассчитывалась масса пара в пузырьке и затем по формуле (5) находился новый радиус пузырька R₁ и скорость движения границы пузырька и по радиусу г. При найденных скорости роста и радиусе пузырька расчет повторялся на новом шаге по времени и заканчивался на момент, когда поверхность, занятая пузырьками равна всей поверхности нагревателя. Результаты расчетов показаны на рис. 2.

Анализ результатов этих расчетов показал, что с увеличением теплового потока в стенке нагревателя преобладающую роль в покрытии всей поверхности играют первые зарождающиеся пузырьки.

Рис. 2. Скорость роста пузырьков пара на поверхности нагревателя: 1, 2, 3- при температурах поверхности 135, 136 и 138 градусов соответственно

2.2. Задача о формировании волны давления в кольцевом канале

Следуя модели образования волны давления вследствие слияния пузырьков на поверхности нагревателя и последующему взрывному вскипанию микрослоя [1], для расчета амплитуды волны давления используем зависимость для гидравлического удара.

$$\Delta P = c_0 \rho \frac{dH}{d\tau},\tag{8}$$

где с₀ – скорость звука; $\frac{dH}{d\tau}$ - скорость движения

межфазной границы. Для определения $\frac{dH}{d\tau}$ исполь-

зуется модифицированное уравнение Рэлея для цилиндрической межфазной поверхности, записанное исходя из условия равенства паровых объемов полусферы и цилиндра.

Рис. 3. Изменение давления по времени при $q_v = 4,2\,10^9$ Вт/м³: 1 - результат расчета; 2- эксперимент [1]

$$H\frac{d^{2}H}{dt^{2}} + \frac{3}{2}\left(\frac{dH}{dt}\right)^{2} + \frac{2\sigma}{\rho_{l}H} = \frac{P_{\nu}(\rho_{\nu}T_{\nu}) - P_{l}}{\rho_{l}}, \quad (9)$$

где $H = \frac{\pi R^2}{2l}$. На рис. 3 показаны результаты проведенных расчетов по формуле (8) с учетом (9).

3. ВЛИЯНИЕ ШАРОВОЙ ЗАСЫПКИ

Анализ результатов экспериментального исследования [8] выявил существенное влияние шаровой засыпки на основные параметры (время индукции и максимальную амплитуду давления) процесса взрывного вскипания недогретой воды при быстром подводе мощности к поверхности нагревателя. Отметим некоторые особенности этого влияния. Наличие в канале шаровой засыпки с теплофизическими свойствами, отличными от свойств воды, приводит к различию в динамике протекания процессов теплообмена в пристенном слое воды и тем самым непосредственно влияет на время индукции. Засыпка также существенно влияет на объем перегретого слоя жидкости за счет эффекта вытеснения и условия распространения паровой полости в канале.

Оценим влияние размеров засыпки на объем жидкости, вытесняемый из перегретого слоя. Для этого выделим элементарные ячейки для кубической и ромбоэдрической схем упаковки и рассчитаем объем пристенного слоя и объем жидкости вытесняемый шариками различного радиуса.

Для кубической упаковки объем жидкости в слое толщиной *h*, для одного шарика, вычисляется по формуле:

$$V_{\rm MK,CJI} = 4R^2h, \qquad (10)$$

а объем, занимаемый шариком в слое, вычисляется по формуле:

$$V_{\rm map} = \pi R h^2 - \frac{\pi h^3}{3}.$$
 (11)

Для ромбоэдрической упаковки эти же объемы вычисляются по формулам:

$$V_{\rm MK,C,II} = 2\sqrt{3}R^2h \tag{12}$$

И

l

$$V_{\rm map} = \pi R h^2 - \frac{\pi h^3}{3}.$$
 (13)

Для сопоставления этих объемов проведены расчеты для различных диаметров шарика, изменявшихся от 1 до 5 мм при постоянной величине перегретого слоя жидкости h, равного 0.1 мм. Результаты показаны на рис. 4.

Из проведенных расчетов видно, что при росте радиуса шарика объем жидкости в слое, приходящемся на один шарик, растет заметно быстрее, чем объем жидкости вытесняемый шариком. То есть при увеличении радиуса шарика его влияние на пристенный слой, с точки зрения вытеснения жидкости, снижается, а при снижении увеличивается. Расчеты также показали, что способ упаковки шариков слабо влияет на эффект вытеснения.

Рис. 4. Зависимость объемов перегретого слоя от радиуса шарика для кубической упаковки: 1- объем перегретого слоя, вытесняемого шариком; 2 - объем перегретого слоя под шариком

ЗАКЛЮЧЕНИЕ

Предложенная в настоящей работе модель вскипания недогретой жидкости в кольцевом канале позволяет проводить расчеты амплитуды волны давления при различных темпах тепловыделения в нагревателе и начальных распределениях температур в пристенной области.

Выполнен анализ влияния размеров шаровой засыпки на перегретый пристенный слой жидкости, который показал, что с уменьшением диаметра шариков роль эффекта вытеснения существенно возрастает.

Работа выполнена при финансовой поддержке РФФИ (проекты 05-02-16313a, 05-02-08254 офи-а)

СПИСОК ОБОЗНАЧЕНИЙ

 σ - коэффициент поверхностного натяжения, Н/м; ρ_{v} - плотность пара, кг/м³;

- *T_s* температура насыщения, К;
- *T*_w температура стенки, К;
- *В*-газовая постоянная пара, Дж/(кг · К);
- L теплота фазового перехода, Дж/кг;
- *h_{cp}* средняя шероховатость, мкм;
- h_{ск} среднеквадратичная шероховатость, мкм;
- c_p теплоемкость, Дж/(кг · К);
- *с*₀ скорость звука в жидкости;
- λ коэффициент теплопроводности, Вт/м К;
- τ время, с;

m – масса пара, кг;

 q_{v} - объемная плотность тепловыделения, BT/m^{3} .

СПИСОК ЛИТЕРАТУРЫ

- 1. Покусаев Б.Г., Казенин Д.А., Таиров Э.А., Чижиков С.А. Моделирование ударных процессов при аварийном набросе мощности в сборке твэлов // Теплоэнергетика. 1999. №3. С. 53-62.
- Филиппов Г. А., Богоявленский Р. Г., Авдеев А.А. Перспективы создания прямоточных микротвэльных ядерных реакторов с перегревом пара // Тяжелое машиностроение. 2002. № 1. С. 7-11.
- Деев В.И., Куценко К.В., Лаврухин А.А., Харитонов В.С. Нестационарный кризис кипения жидкостей // Тез. докл. V Минского Междунар. Форума по тепло- и массообмену. Т. 2. Минск: Изд. ИТМО НАНБ, 2004.
- Покусаев Б.Г., Таиров Э.А., Некрасов А.К., Некрасов Д.А. Нестационарные теплогидравлические процессы в зернистом слое Тезисы докладов 5-ого Минского Международного Форума по Тепло и Массообмену Том 2 Минск: Изд. ИТМО НАНБ. 2004,
- 5. Кордонский Х.Б. Приложения теории вероятностей в инженерном деле. М. 1963 г. 290 с.
- Cooper M.G., Lloyd A.G.P. The microlayer in nucleate pool boiling // Int. J. Heat and Mass Transfer 1969.- vol. 12. - p. 895-913
- 7. Самарский А.А. Теория разностных схем. М.: Наука, 1984. 616 с.
- 8. Покусаев Б.Г., Таиров Э.А., Казенин Д.А, Гриценко М.Ю., Сысков Л.В. Теплогидравлические процессы в пористых структурах при импульсном тепловыделении на стенке // ТВТ. 2002. т.40. №2. С. 306-313.