А.Г. Абрамов, Е.М. Смирнов

Санкт-Петербургский государственный политехнический университет, Санкт-Петербург, Россия

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ТУРБУЛЕНТНОЙ СВОБОДНОЙ Конвекции воздуха в подогреваемой изнутри кольцевой полости

АННОТАЦИЯ

Представляются результаты расчетов турбулентной свободной конвекции воздуха в подогреваемой изнутри замкнутой кольцевой полости, выполненных при числе Релея 8×10^7 на основе трехмерной нестационарной формулировки. Моделирование турбулентности базируется на гибридном RANS/LES подходе. Производится сопоставление результатов расчета с экспериментальными данными для поля температуры. Анализируется влияние на конвекцию типа тепловых граничных условий на нижней стенке полости.

1. ВВЕДЕНИЕ

Свободноконвективные движения жидкости в областях с боковым подогревом широко распространены в природе и технике и постоянно привлекают повышенный интерес исследователей. На сегодняшний день актуальной остается задача разработки адекватных методов расчета турбулентных режимов свободной конвекции, развивающейся в подогреваемых сбоку замкнутых полостях различной геометрии. Наиболее распространенным в инженерной практике подходом к исследованию данной проблемы остается использование осредненных по Рейнольдсу уравнений Навье-Стокса (Reynolds-Averaged Navier-Stokes, RANS). При этом обнаруживается сильная зависимость результатов расчетов от выбора модели турбулентности и для получения адекватных результатов требуются специальные настройки моделей применительно к рассматриваемому классу задач.

В целом накопленный обширный опыт численного моделирования свидетельствует о том, что для качественного предсказания характеристик турбулентной конвекции, развивающейся в замкнутых полостях при интенсивном боковом подогреве, следует использовать трехмерные нестационарные формулировки задач [1-4]. Наиболее высокоточные расчеты проводятся на основе метода прямого численного моделирования (Direct Numerical Simulation, DNS) или метода моделирования крупных вихрей (Large Eddy Simulation, LES), требующих значительных вычислительных ресурсов [2]. Заметно снизить временные затраты на проведение расчетов удается при использовании гибридных подходов к моделированию турбулентности, сочетающих в себе сильные стороны методов LES и RANS [3, 4].

В недавно опубликованной работе [4] на основе гибридного RANS/LES подхода, использующего уравнение переноса кинетической энергии неразрешаемых составляющих турбулентного движения, выполнены расчеты статистически двумерной турбулентной конвекции воздуха в замкнутой полости квадратного сечения с нагретыми до разных температур боковыми стенками. Было, в частности, показано, что по степени согласованности с данными эксперимента результаты расчетов не уступают полученным методом LES на существенно более измельченных расчетных сетках.

В настоящей работе тот же, что и в [4], гибридный подход используется для численного моделирования свободноконвективного течения воздуха в замкнутой кольцевой полости с нагреваемой внутренней и охлаждаемой внешней вертикальными поверхностями при числе Релея 8×10⁷.

2. ПОСТАНОВКА ЗАДАЧИ

Расчеты свободной конвекции воздуха в кольцеусловий полости проводились для вой эксперимента, составляющего часть работы [5] (рис. 1). Принималось: H/B = 2.45, $R_e/R_i = 5/3$, $B/R_i = 2/3$, где $B = R_e - R_i$. Предполагалось, что вертикальные границы расчетной области имеют постоянные температуры T_i и T_e ($T_i > T_e$); постоянство этих температур обеспечивалось в эксперименте с высокой степенью точности. На

Рис. 1. Геометрия задачи, расчетная сетка и граничные условия

верхней стенке полости задавалось измеренное в эксперименте распределение температуры (см. рис. 2), а нижняя стенка полагалась низкотеплопроводной (измерения температуры на этой стенке не производились).

Для оценки влияния на конвекцию тепловых условий на нижней границе полости расчеты в настоящей работе были выполнены в двух постановках. В первом случае задача решалась с наложением условий адиабатичности на нижней стенке. Во втором случае был выполнен расчет сопряженного теплообмена в области, включающей заполненную воздухом полость и пристыкованное к ней снизу фанерное кольцо толщиной 0.03В, в соответствии с данными экспериментов. При этом считалось, что температура фанерного кольца на внутреннем и внешнем радиусах принимает значения T_i и T_e соответственно, а на обращенной наружу поверхности ставилось условие нулевого теплового потока. Принятые для сопряженного расчета физические свойства сред указаны в таблице 1.

Таблица 1. Физические свойства сред в расчете сопряженного теплообмена

Параметр	Воздух	Фанера
Плотность, кг/м ³	1.225	600
Удельная теплоемкость, Дж/(кг·К)	1050	1200
Коэфф. теплопроводности, Вт/(м·К)	0.028	0.13

3. ОСНОВНЫЕ УРАВНЕНИЯ И МОДЕЛИРОВАНИЕ ТУРБУЛЕНТНОСТИ

Для описания свободной конвекции несжимаемой ньютоновской жидкости использовалась система нестационарных трехмерных уравнений неразрывности, движения и энергии. Эффекты плавучести в поле силы тяжести учитывались в приближении Буссинеска. В этих условиях система безразмерных уравнений, описывающих турбулентную тепловую конвекцию, может быть представлена в виде:

 $\nabla \cdot \boldsymbol{V} = 0$;

$$\begin{split} &\frac{\partial V}{\partial t} + (V\cdot\nabla)V = -\nabla p^* + 2\nabla\cdot(v_{eff}\dot{S}) - Te_g \\ &\frac{\partial T}{\partial t} + (V\cdot\nabla)T = \nabla\cdot(a_{eff}\nabla T) \,. \end{split}$$

Здесь за масштабы длины, скорости и температуры принимаются соответственно ширина полости *B*, скорость плавучести $V_b = (g\beta\Delta TB)^{1/2}$ и разность температур $\Delta T = T_i - T_e$. Время нормировано на отношение B/V_b . В выражение для эффективного кинематического коэффициента вязкости, записанное в безразмерном виде, $v_{eff} = (\Pr/Ra)^{1/2} + v_t$ входит турбулентная вязкость v_t . Эффективный коэффициент температуропроводности записывается следующим образом: $a_{eff} = (Pr \cdot Ra)^{1/2} + v_t/Pr_t$, где Pr_t = 0.4 – турбулентное число Прандтля. Согласно условиям эксперимента, число Релея Ra = $g\beta\Delta TB^3/va$ полагалось равным 8.03×10^7 , а число Прандтля – Pr = 0.71.

Для моделирования турбулентности использовался гибридный RANS/LES подход, основанный на дифференциальной модели с одним уравнением для кинетической энергии неразрешаемых компонент турбулентного движения. Подробное описание модели можно найти, например, в работах [3, 4]. Отметим лишь, что данный подход предполагает решение системы нестационарных уравнений RANS в пристенных областях и использование метода LES вдали от стенок. Такая гибридизация позволяет существенно экономить на размерности расчетной сетки по сравнению с "чистым" методом LES, предполагающим разрешение основных энергонесущих структур вплоть до самой стенки и требующим по этой причине очень подробных расчетных сеток вблизи стенок. В гибридном подходе за описание пристенных областей "отвечает" метод RANS, допускающий здесь сильную пространственную анизотропию ячеек.

4. ВЫЧИСЛИТЕЛЬНЫЕ АСПЕКТЫ

При проведении расчетов использовался развиваемый на протяжении более десяти лет на кафедре гидроаэродинамики СПбГПУ, широко апробированный программный комплекс (ПК) SINF (*Supersonic to INcompressible Flows*), предназначенный для решения трехмерных уравнений Навье– Стокса [6]. Пространственная дискретизация в ПК SINF осуществляется по методу контрольного объема со вторым порядком точности. Для получения нестационарных решений применяется неявная схема второго порядка по физическому времени.

Настоящие расчеты проводились на кластере кафедры гидроаэродинамики СПбГПУ с использованием параллельной версии ПК, базирующейся на применении метода декомпозиции расчетной области, стратегии SPMD (Single Process Multiple Data) и коммуникационной библиотеки MPI.

В меридиональном сечении неравномерная двумерная расчетная сетка имела размерность 76×76 ячеек со сгущением узлов к стенкам полости. Трехмерная расчетная сетка, покрывающая всю кольцевую полость, была получена из двумерной путем вращательной трансляции и включала 693120 ячеек. В сопряженной постановке размерность сетки была больше на 5% за счет пристыкованного "твердого" блока, для которого решалась задача теплопроводности. На использованных сетках удалось разрешить характерные для рассматриваемого режима конвекции низкочастотные трехмерные пульсации скорости и температуры, оказывающие существенное влияние на структуру течения. Шаг по безразмерному времени принимался равным 0.1.

5. РЕЗУЛЬТАТЫ РАСЧЕТОВ

Для изучения возможностей осесимметричных постановок по численному предсказанию характеристик турбулентных течений в рассматриваемых условиях была сначала проведена серия расчетов на основе ряда популярных низкорейнольдсовых моделей метода RANS (k-є модели в формулировках Лаундера-Шармы и Янг-Ши, *k-* модель Уилкокса, модель SST Ментера, v2f модель Дурбина). Для всех апробированных моделей расчеты на основе стационарной постановки не позволяли получить сошедшегося решения. В нестационарных расчетах в процессе эволюции по физическому времени наблюдалось полное затухание пульсаций скорости и температуры. При этом модели давали практически нулевой уровень турбулентной вязкости. Степень согласия результатов расчетов с экспериментальными данными по полям температуры была неудовлетворительной.

В трехмерных расчетах с использованием гибридного RANS/LES подхода максимальные значения турбулентной вязкости, примерно в три раза превосходящие величину молекулярной вязкости, наблюдались вблизи вертикальных стенок полости. При этом в расчете с теплоизолированной нижней стенкой колебания с течением времени затухали и результатом являлось RANS-решение, определяемое использованной в гибридном подходе моделью турбулентности. В случае сопряженного теплообмена реализовывался режим со статистически установившимися колебаниями.

На рис. 2 для двух вариантов расчета в трехмерной постановке приведены распределения осредненной во времени температуры на нижней стенке полости (вдоль радиуса) совместно с данными экспериментальных измерений температуры на верхней стенке полости. Температура внутренней поверхности нижней стенки в расчете сопряженного

Рис. 2. Рассчитанные профили осредненной во времени температуры на внутренней поверхности нижней стенки и экспериментальное распределение температуры на верхней стенке полости

теплообмена оказалась существенно выше, чем для идеального случая абсолютно теплонепроницаемой нижней стенки, а качественный характер распределения — близким к экспериментальному, замеренному для противоположной стенки.

Общую структуру конвекции в полости иллюстрирует рис. 3, а, где показаны установившиеся (осредненные) поля температуры и скорости в меридиональном сечении для двух вариантов граничных условий на нижней стенке. Видно, что в обоих случаях вблизи вертикальных стенок формируются сравнительно тонкие температурные пограничные слои и наблюдается инициированное плавучестью интенсивное восходящее (нисходящее) течение: максимальные значения скорости достигают здесь половины масштабной скорости плавучести. Верхнюю часть полости занимает интенсивная горизонтальная струя воздуха, направленная к холодной внешней границе. В центральной части полости течение практически отсутствует и устанавливается близкий к однородному вертикальный градиент температуры. В целом рассматриваемое течение следует отнести к режиму слабой турбулентности.

Наиболее отчетливо различия в полях для двух вариантов расчета проявляются вблизи нижней стенки полости. В решении задачи сопряженного

Рис. 3. Установившиеся (осредненные) поля температуры и скорости в вертикальном сечении полости (а) для случая теплоизолированной нижней стенки (слева) и в решении задачи сопряженного теплообмена (справа). Изменение температуры по высоте полости (б) и профили температуры (в) на разных расстояниях z от дна полости (снизу-вверх – z = 0.14, 0.44, 0.83, 1.25, 1.62, 2.0, 2.4) в сопоставлении с данными экспериментов

Рис. 4. Временные колебания температуры и вертикальной компоненты скорости в точках мониторинга r = 0.05, z = 1.225 (слева) и r = 0.05, z = 0.18 (справа)

теплообмена здесь, как и у верхней стенки, формируется интенсивная горизонтальная струя. На среднем радиусе температура воздуха меняется по высоте полости немонотонно, а вертикальный градиент температуры меньше, чем в случае теплоизолированной нижней стенки. В верхней же части полости различия в структуре течения для двух рассматриваемых постановок незначительны.

На рис. 3, б, в результаты расчетов сопоставляются с экспериментальными данными для поля температуры (здесь сохранены обозначения, принятые для рис. 2). Приведенные на рис. 3, б профили температуры на среднем радиусе характеризуют температурную стратификацию в полости. В обоих вариантах расчета плавный монотонный рост температуры с высотой в центральной части полости сменяется резким ее уменьшением вблизи верхней стенки. В решении задачи о сопряженном теплообмене наблюдается обратное поведение температуры у нижней стенки: плавное уменьшение температуры сменяется ее резким ростом по мере приближения к стенке, это находится в согласии с экспериментом. Напротив, расчет с теплонепроницаемой нижней стенкой предсказывает монотонное уменьшение температуры вплоть до самой стенки.

На рис. 3, в приведены экспериментальные и расчетные профили температуры на разных расстояниях от дна полости. В центральной и верхней частях полости экспериментальные профили воспроизводятся в обоих вариантах расчетов с удовлетворительной точностью. Вблизи нижней стенки полости приемлемую степень согласия с данными эксперимента демонстрирует только расчет в сопряженной постановке. Наиболее вероятной причиной видимых различий расчетных и экспериментальных значений температуры в пограничном слое на холодной стенке является повышенная погрешность измерений на этом участке. Как отмечено в [5], при измерении горизонтальных профилей температуры термопарой последняя заводилась в рабочую область со стороны охлаждаемой границы полости, что в силу теплопроводящих свойств державки приводит к занижению измеряемых значений температуры по сравнению с реальными.

Особенности временного поведения развивающейся конвекции иллюстрирует рис. 4, где для расчета в сопряженной постановке показаны колебания во времени температуры и вертикальной компоненты скорости в двух точках мониторинга. Для анализа намеренно выбраны точки, расположенные вблизи стенок, поскольку в центральной части полости пульсации практически отсутствуют. Характер регистрируемых колебаний соответствует слаботурбулентному режиму конвекции. Амплитуда предсказываемых колебаний не превышает 5% от масштабных величин температуры и скорости.

ЗАКЛЮЧЕНИЕ

При числе Релея 8×10⁷ на основе трехмерной нестационарной формулировки выполнены расчеты турбулентной свободной конвекции воздуха в кольцевой полости с подогревом со стороны ее внутренней границы. Выявлены отличия в структуре конвекции, даваемой решением с условием идеально теплоизолированной нижней стенки и решением задачи сопряженного теплообмена, учитывающим перетекание тепла по низкотеплопроводному дну полости. Установлено, что хорошее согласие с данными эксперимента по температурным полям достигается только при использовании сопряженной постановки.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант №05-02-17189-а), а также гранта Правительства Санкт-Петербурга для молодых кандидатов наук (шифр PD05-1.10.-128).

СПИСОК ОБОЗНАЧЕНИЙ

- *R*_e внешний радиус полости;
- R_i внутренний радиус полости;
- H высота полости;
- $B = R_e R_i$ ширина полости;
- ΔT характерный перепад температуры;
- V_{b} скорость плавучести.

СПИСОК ЛИТЕРАТУРЫ

- Dol H.S., Hanjalić K. Computational study of turbulent natural convection in a side-heated near-cubic enclosure at a high Rayleigh number // Int. J. Heat Fluid Flow. 2001. V. 44. P. 2323–2344.
- Peng S.-H., Davidson L. Large eddy simulation of turbulent buoyant flow in a confined cavity // Int. J. Heat Fluid Flow. 2001. V. 22. P. 323–331.
- 3. **Smirnov E.M.** Recent advances in numerical simulation of 3D unsteady convection controlled by buoyancy and rotation // Proc. 12th International Heat Transfer Conference, Grenoble, France (CD-ROM proc.). 2002. 12 p.
- Абрамов А.Г., Смирнов Е.М. Численное моделирование турбулентной конвекции воздуха в подогреваемой сбоку полости квадратного сечения // ТВТ. 2006. Т. 44. № 1. С. 1–8.
- Смирнов Е.М., Баранов В.А., Викульцев Ю.А., Рис В.В., Рудинский Э.А. Адаптация моделей турбулентности для моделирования конвекции в вертикальной цилиндрической полости // Отчет по НИР 504604, СПбГТУ, 1996. 50 с.
- 6. Смирнов Е.М., Зайцев Д.К. Метод конечных объемов в приложении к задачам гидрогазодинамики и теплообмена в областях сложной геометрии // НТВ СПбГПУ. 2004. № 2(36). С. 70–81.