В.И. Гулевич

Астраханский научно-исследовательский и проектный институт газа, Россия

ОСОБЕННОСТИ СУБЛИМАЦИОННОГО ОБЕЗВОЖИВАНИЯ РАСТВОРОВ НЕОРГАНИЧЕСКИХ СОЛЕЙ В КРИОХИМИЧЕСКОЙ ТЕХНОЛОГИИ

АННОТАЦИЯ

Стремление к получению новых материалов с повышенными качественными характеристиками вызывает усиливающийся интерес к технологии наноматериалов и ультрадисперсных порошков (УДП) различной природы и назначения.

Из существующего множества химических, физикохимических и физических способов перевода твердых макрочастиц в ультрадисперсное состояние широкими возможностями технологической и экологической безопасности при высокой производительности и низкой себестоимости переработки обладает криохимический метод.

Приведено время сублимационного обезвоживания при кондуктивном энергоподводе слоя с плоской границей фазового перехода. Постоянство температуры в замороженном слое обосновано с привлечением теории тепловых труб. Приведены факторы, снижающие время сублимационной сушки и увеличивающие его неорганических солей ферритообразующих компонентов, получаемых по криохимическому методу синтеза, по сравнению с продуктами органической природы и растительного происхождения. Получено уравнение времени сублимационного обезвоживания кристалло-гидратных солей.

1. ВВЕДЕНИЕ

При кондуктивном энергоподводе высушиваемый материал обычно укладывается на противни. Значительные термические сопротивления при сушке создаются зазорами, возникающими за счет неплотного прилегания продукта к противню [1] и за счет фазового сопротивления на поверхности материала (рис. 1 и 2).

Рис. 1. Распределение температуры в материале в процессе сублимации при кондуктивном энергоподводе

Рассмотрим задачу сублимации слоя с плоской границей фазового перехода и, используя условие Стефана на границе (сухой – замороженный), уравнений теплового баланса, Клаузиуса—Клапейрона и Неймана, приходим к известной формуле времени сушки:

$$\tau = \frac{\varphi_{\pi} L_{\phi} H^2}{2 \cdot (T_{cT} - T_{3aM}) \lambda_c} \,. \tag{1}$$

Постоянство температуры в замороженном слое с плоской границей фазового перехода (рис. 1) с достаточной для практики точностью обосновано с привлечением теории тепловых труб [2]. В основу физической модели положено предположение о том, что замороженный слой гранулированного материала представляет собой систему последовательно установленных по высоте тепловых труб, где аналогами тепловых труб являются пустоты между замороженными гранулами, объемы которых аппроксимированы объемом равновеликих цилиндров, причем соотношение их длины к диаметру составляет не менее 3-4.

При перепаде давлений, необходимом для обеспечения перетекания пара от осушенного к замороженному материалу, по уравнениям Коттера и Буссе (перепад давлений испаритель-конденсатор) [3], Клапейрона и уравнения состояния газа, перепад температур вдоль парового канала равен:

$$\Delta T = \frac{RT^2}{L_{\oplus}P} \Delta P_{\Pi} \,. \tag{2}$$

Для характерных параметров процесса и водяного пара, размеров монодисперсных криогранул (0,3...3,0 мм) и пустот между ними перепад температур не превышает 3,8 % от температуры замораживания. Скорость звука в паре составляет $C_{3B} = \sqrt{\gamma RT} = 334,2$ м/с при указанных выше условиях, скорость водяного пара в каналах $v = 8\mu_{\Pi}/(r_{\Pi}\rho_{\Pi})$ достигает 310 м/с, тогда число Маха $M = v/C_{3B} = 0,93$ скорости звука, т.е. переконденсация пара в каналах тепловых труб идет со скоростью, соизмеримой со скоростью звука. Таким образом, можно констатировать, что предположение о постоянстве температуры замороженного слоя правомерно [2].

2. ФАКТОРЫ, УМЕНЬШАЮЩИЕ ПРОДОЛЖИТЕЛЬНОСТЬ СУБЛИМАЦИОННОГО ОБЕЗВОЖИВАНИЯ

Факторы, снижающие время сублимационного обезвоживания неорганических солей по сравнению с продуктами органической природы:

 для органических продуктов в процессе сублимационной сушки перепад температур между температурой фазового перехода и температурой теплоподводящей поверхности при кондуктивном энергоподводе составляет [4]:

$$\Delta T = T_{\rm cr} - T_{\rm th} \le 60 - 70 \,^{\circ} {\rm C} \,. \tag{3}$$

В процессе сублимационной сушки в криохимическом методе синтеза [5—6], например сернокислых солей ферритообразующих компонентов, появляется возможность значительного увеличения температуры теплоподводящей поверхности при кондуктивном энергоподводе, т.к. в этом случае за сублимационным обезвоживанием следует процесс термического разложения солей (с образованием оксидов и их ферритизацией), т.е. процесс термического воздействия на материал продолжается и разность температур может достигать [2]:

$$\Delta T = T_{\rm cr} - T_{\rm d} \le 150 - 400 \ ^{\circ}{\rm C} ; \qquad (4)$$

 как показали проведенные исследования, время сублимационной сушки гранулированного материала снижается по сравнению с монолитным слоем на 25...55 % [4];

3) как показали проведенные исследования, время сублимационной сушки гранулированного материала в оребренных противнях, когда высота ребер в 4—5 раз больше половины шага оребрения, снижается на 10...30 % по сравнению с сушкой гранулированного материала на плоской поверхности [2].

Таким образом, за счет вышеуказанных факторов время сублимационного обезвоживания теоретически должно было бы сократиться по сравнению с теоретическим по формуле (1) в среднем в 6—7 раз. В реальных условиях снижение времени сублимационной сушки не наблюдается, так как имеется ряд факторов, которые увеличивают ее продолжительность.

3. ФАКТОРЫ, УВЕЛИЧИВАЮЩИЕ ПРОДОЛЖИТЕЛЬНОСТЬ СУБЛИМАЦИОННОГО ОБЕЗВОЖИВАНИЯ НЕОРГАНИЧЕСКИХ МАТЕРИАЛОВ

Факторы, увеличивающие время сублимационного обезвоживания материалов и продуктов:

1) как показал анализ [1], термическое сопротивление за счет неплотного прилегания материала к противню (наличие зазоров) эквивалентно толщине осушенного слоя $\Delta h_{\rm M} = (3...5) \cdot 10^{-3}$ м;

2) оценим фазовое сопротивление при сушке (рис. 2).

Рис. 2. Распределение температуры и фазовое сопротивление при сублимации

В рассматриваемом случае в соответствии с формулой Герца—Кнудсена скорость сублимации составляет:

$$J = \frac{1}{\sqrt{2\pi R}} \left(\frac{p_{\text{IIOB}}}{\sqrt{T_{\text{IIOB}}}} - \frac{p_{\phi}}{\sqrt{T_{\phi}}} \right).$$
 (5)

Учитывая, что $T_{\text{пов}}$ и T_{ϕ} близки по величине, из уравнения теплового баланса

$$\lambda_{\rm c} \frac{T_{\rm HOB} - T_{\rm a}}{\Delta h} = q = JL_{\rm b}, \qquad (6)$$

считая фазовое сопротивление равным некоторой фиктивной толщине осушенного слоя Δh_{ϕ} , и, с учетом уравнения Клапейрона—Клаузиуса, имеем [1, 2]:

$$\Delta h = \frac{\lambda_{\rm c} \sqrt{2\pi R T_{\rm a}}}{K_I L_{\rm b} p_{\rm a}},\tag{7}$$

где $K_l = L_{\phi} / RT_a^2 \approx 0,12 \text{ K}^{-1}$. Для давлений процесса сублимации неорганических материалов $p_a = 13,3...133$ Па, температурах 190...230К, удельной теплоте сублимации $L_{\phi} = 2900 \text{ кДж/кг}$ и теплопроводности осушенного слоя $\lambda_c = 0,04 \text{ Br/}$ (м·К) фазовое сопротивление эквивалентно термическому сопротивлению слоя сушимого материала толщиной $\Delta h_{\phi} = (1...5) \cdot 10^{-3} \text{ м}$;

3) для материалов криохимического синтеза характерно увеличение времени сушки за счет удаления части кристаллизационной воды из исходных солей. После возгонки всего льда, содержащегося в материале, в нем остается только химически связанная влага. Ее удаление требует повышенного расхода энергии. Однако подвод тепла в толщу высохшего материала затруднен, вследствие чего происходит снижение скорости сушки при непрерывном повышении температуры в слое материала. Химически связанная влага (исходные соли в криохимическом методе синтеза — кристаллогидраты [7]) может удаляться из материала на второй стадии процесса или удерживаться им в зависимости от химической природы последнего. Это достигается снижением давления паров на поверхности конденсатора сублимационной установки за счет снижения температуры хладагента до 223...193 К. Кинетические кривые сублимационного обезвоживания материалов криогристаллизации водно-солевых систем приведены на рис. 3.

Рис. 3. Кинетические кривые сублимационного обезвоживания материалов криогристаллизации водносолевых систем (степень обезвоживания α): *а* — не образующих кристаллогидраты; *б* — образующих кристаллогидраты

Различные участки кривых описываются следующими формально-кинетическими уравнениями:

$$\frac{\mathrm{d}\alpha}{\mathrm{d}\tau} = k_i \cdot \left(1 - \alpha\right)^n,\tag{5}$$

где n = 0, 2/3 или 1 для I, II и III стадий соответственно.

Известно, что теплота испарения воды в сферической капле:

$$Q = RT^2 \frac{\partial \ln \frac{p_i}{p_{\rm H}}}{\partial T},$$
(8)

а давление связанной воды

$$p_i = p_{\rm H} \exp\left(-\frac{Q}{RT}\right). \tag{9}$$

В основу связи воды с веществом Ребиндером [4] положена величина энергии связи, т.е. работа изотермического обратимого отрыва одного моля воды от сухого каркаса материала (в нашем случае соли):

$$\Delta E = RT \ln \frac{p_{\rm H}}{p_i} \,. \tag{10}$$

Все кристаллогидраты теряют воду с большим эндотермическим эффектом, причем с уменьшением гидратного числа в большинстве случаев наблюдается увеличение энтальпии дегидратации. Так, например, для семиводного сернокислого железа к безводному эндотермический эффект возрастает с 52,7 до 75,2 кДж/моль, для семиводного сернокислого никеля — с 50,6 до 73,1 кДж/-моль, для семиводного сернокислого цинка — с 52,7 до 79 кДж/моль [8, 9].

Энергия связи воды с солевым каркасом (для фиксированных $\alpha_{\rm B}$):

$$E_{\rm CB} = -\frac{2}{3} T_{\rm IIOB} \log \frac{1 - \alpha_{\rm B}}{1 - \alpha_{\rm I-II}} + \frac{T_{\rm IIOB}}{T_3} \cdot \Delta H_{ic}$$
(11)

Как показали исследования [5], количество оставшейся в материале при сублимационном обезвоживании химически связанной влаги существенно отражается на качестве ферритовых материалов, так как приводит к получению равновесного (количество молекул H₂O равно 1,0...1,2), рентгеноаморфного (количество молекул H₂O равно 2,0...2,4) продукта или продукта с вакансионной структурой (количество молекул H₂O равно 1,5...1,8). Последующее термическое разложение рентгеноаморфного и вакансионного материала позволяет реализовать преимущества криохимической технологии и получить ферритовый материал с высокой химической однородностью. Продукт сублимационной сушки кристаллогидратных солей можно представить в виде «соль *n*H₂O», а число молей воды в кристаллогидрате определяется по формуле:

Таблица. Экспериментальные данные по сублимационному обезвоживанию растворов кристаллогидратов ферритообразующих солей

1000	разующих солен								
№ п/п	Материал/ концен- трация, масс. %	Предыстория замора- живания и условия процесса обезвоживания	Температура теплоподводящей поверхности, К	Температура десублиматора, К	Давление в сублима- торе, <i>p</i> _A , мм рт. ст.	Высота слоя сублима- ции, Н, мм	Время субли- мации _о д , час	Число молей кристал- лизационной воды, п	Толщина слоя, экви- валентная $h_{\rm kp.r}$ м
1	1800HT / 18%	Криограну-	333	217	0,06	10	4,3	2,3	
2	1800HT / 18%	лы, сушка	343	221	0,08	10	3,9	1,4	
3	1800HT / 18%	в оребрен-	353	227	0,11	10	3,7	1,7	
4	1800HT / 18%	ном про-	363	220	0,08	10	3,4	1,5	(1,0-3,0) 10 ⁻⁵
5	1800HT / 18%	тивне	333	221	0,09	20	16,4	1,8	
6	1800HT / 18%		343	221	0,08	20	15,3	1,6	
7	1800HT /10-12%	Криограну-	370	223	0,45	8	3,6	1,5	
8	1800HT /10-12%	лы, сушка	370	223	0,28	8	4,2	1,7	(0,5-2,0) 10 ⁻³
9	1800HT /10-12%	на плоском	369	213	0,23	8	3,5	1,5	
10	1800HT /10-12%	противне	369	213	0,38	8	3,4	1,8	
11	1000 HT / 5%	Криограну-	451	213	0,03	15	6,8	2,4	
12	1000 HT / 9%	лы, сушка	453	223	0,05	15	5,5	1,6	(1,5-3,5) 10 ⁻³
13	1000 HT / 11%	на плоском	398	213	0,02	15	7,6	1,5	
14	1000 HT / 13%	противне	403	223	0,04	15	5,5	2,1	
15	1000 HT / 18%		453	213	0,02	15	5,8	1,4	
16	1000 HT / 18%	Заморажи-	333	223	0,2	20	36	1,8	
17	1000 HT / 18%	вание бло-	333	213	0,2	15	24	1,7	2
18	1000 HT / 18%	ком, сушка	333	223	0,2	20	36	1,5	$(12-15) 10^{-5}$
19	1000 HT / 18%	на плоском	333	213	0,25	15	24	1,8	
		противне							
20	1000 HT / 5%	Криограну-	363	223	0,015	7	4	1,5	(0.5.0.5) 10-3
21	1000 HT / 10%	лы, сушка	168	228	0.02	10	2	1.7	(0,5-2,5) 10 ⁻⁵
21	1000111/10/0	в оребрен-	000	220	0,02	10	5	1,7	
22	1000 HT / 13%	ном про-	353	228	0,025	8	3	1,6	1
		тивне						, í	

Примечание. Для приведенных марок ферритовых материалов стехиометрических составов эвтектическая концентрация $C_{_{3BT}} = 13\%$ вс., а — насыщения $C_{_{H}} = 22\%$ вс.

$$n_{\rm B} = \frac{A/m_{\rm B}}{100 - A/m_{\rm 5,c}} \,, \tag{12}$$

а содержание воды в кристаллогидрате, в свою очередь, определяется по формуле:

$$A, \% = 100 - \frac{V_{K_2 C r_2 O_7} \rho_{K_2 C r_2 O_7} 100}{m_{5,c} k_1}.$$
 (13)

Бихромат калия, в этом случае, используется как поглотитель и индикатор воды в кристаллогидрате. Реакция между бихроматом калия и кристаллогидратом сернокислого железа записана в ионном виде

$$Cr_2O_7^{2-}+2Fe^{2+}+H^+ \otimes 2Cr^{3+}+2Fe^{3+}$$
 (14)

при этом оранжевая окраска раствора переходит в зеленую.

Экспериментальные исследования проводились для растворов предварительно замороженных растворов ферритообразующих компонентов разной концентрации в диапазоне 5...18 % масс. Массовая концентрация кристаллогидрата соли определялась по формуле:

$$C_{\text{macc.}\%} = \frac{100 \ m_{\tilde{6}.c}}{m_{\tilde{6}.c} + V \rho_{\text{B}}} K , \qquad (15)$$

где коэффициент $K = m_{\text{б.с}} / m_{\text{кр.г}}$ и V — объем добавленной воды.

По аналогии с вышеуказанными, оценим это термическое сопротивление некоторой фиктивной толщиной осушенного слоя при сушке.

$$\lambda_{\rm c} \frac{T_{\rm \Pi OB} - T_a}{\Delta h_{\rm KP,\Gamma}} = -\frac{2}{3} T_{\rm \Pi OB} \, \lg \frac{1 - \alpha_{\rm B}}{1 - \alpha_{\rm I-II}} + \frac{T_{\rm \Pi OB}}{T_3} \Delta H_{i\rm c} \,. \tag{16}$$

Как показали проведенные исследования (см. таблицу) и расчеты по формулам (8)—(10) и (16) $\Delta h_{\text{кр}\ \Gamma} = (0,5...3) \cdot 10^{-3}$ м.

Если принять, что распределение температуры в осушенном слое соответствует стационарному (квазистационарное приближение [1]), можно записать:

$$\frac{\mathrm{d}h}{\mathrm{d}\tau} = \frac{\left(T_{\mathrm{cr}} - T_{\mathrm{3aM}}\right)\lambda_{\mathrm{c}}}{\left(h + \Delta h_{\mathrm{M}} + \Delta h_{\mathrm{\varphi}} + \Delta h_{\mathrm{Kp},\mathrm{r}}\right)\varphi_{\mathrm{I}}L_{\mathrm{\varphi}}},\qquad(17)$$

где
$$_{\kappa} = \frac{1}{\frac{1}{\alpha_T} + \sum_{i=1}^n \frac{\delta_i}{\lambda_i}}$$
, a $\Delta h_{\rm M} = \lambda_{\rm c} / \kappa$. (18)

Учитывая, что при $\tau = 0$ h = 0, то, после интегрирования, пренебрегая слагаемыми малых величин второго порядка, для оценки времени сублимационного обезвоживания кристаллогидратных солей, используемых для изготовления ферритовых материалов, получено уравнение:

$$\tau = \left[H^2 + 2H \left(\Delta h_{\rm M} + \Delta h_{\rm \varphi} + \Delta h_{\rm kp,r} \right) \right] \cdot \frac{\varphi_{\rm H} L_{\rm \varphi}}{2 \cdot (T_{\rm cr} - T_{\rm 3aM}) \lambda_{\rm c}} \,. \tag{19}$$

Как показали проведенные исследования и расчеты по формулам (1), (7) и (19) эквивалентная толщина $\Delta h_{\rm kp\,r}$ составила: для криогранул (0,5...3) \cdot 10⁻³ м, а для замороженного монолитом слоя (12-15) 10⁻³ м.

ЗАКЛЮЧЕНИЕ

Произведен анализ факторов, снижающих время сублимационной сушки и увеличивающих его для неорганических солей, в частности ферритообразующих компонентов, получаемых по криохимическому методу синтеза, по сравнению с продуктами органической природы и растительного происхождения. На основе анализа получено уравнение для оценки времени сублимационного обезвоживания кристаллогидратных солей.

СПИСОК ОБОЗНАЧЕНИЙ

C — концентрация, %; C_{3B} — скорость звука, м/с; $H, h, \Delta h, \delta$ — толщина слоя материала, м; Hi — энтальпия, k — коэффициент массопередачи, Bт/ (м·К); L — удельная теплота сублимации, Дж/кг; n, k_1, k_i — коэффициент, m — масса, кг; p — давление, Па; R — универсальная газовая постоянная, кДж/ моль; r — радиус эквивалентной поры, м; v — скорость, м/с; T — температура, К; $\alpha_{\rm T}$ — коэффициент теплоотдачи, Bт/ (м²·К); α — доля воды в материале, $\tau, \Delta \tau$ — время, γ — отношение удельных теплоемкостей водяного пара и осушенного материала; φ — льдосодержание, кг/м³; λ — коэффициент теплопроводности, Bт/(м·К); ρ — плотность, кг/м³; μ — коэффициент динамической вязкости, кг/ (с·м); Σ —сумма параметров.

Индексы:

i — 1, 2,...; а – аппарат, в — вода, б.с — безводная соль; зам
 замороженный; кр.г — кристаллогидрат;
 л — лед; м — материал; н — начальное; п — пар;
 пов — поверхность; пор — поры; с — сублимированный
 материал; ст — теплоподводящая поверхность;
 ф — фазовый переход.

СПИСОК ЛИТЕРАТУРЫ

- 1. Волынец А.З. Сублимация. Текст лекций. М.: МИХМ, 1987. 56 с.
- 2 Гулевич В.И. Тепло- и массообмен при сублимационном обезвоживании растворов ферритообразующих солей: Автореф. ... дис. канд. техн. наук. М.: МГУИЭ, 2004. 16 с.
- 3. Дан П., Рей Д.А. Тепловые трубы: Пер. с англ. М.: Энергия, 1979.272 с.
- Исследование процесса сушки и оптимизация сублимационных установок, перерабатывающих гранулированные пищевые продукты / Б.П. Камовников и др. // Холодил. техника. 1976. №1. С. 40—43.
- Основы криохимической технологии / Ю.Д. Третьяков и др. М.: Высшая школа, 1987.143 с.
- 6. Гулевич В.И. Сублимационное обезвоживание лимитирующая технологическая стадия криохимического метода синтеза // Проблемы газодинамики и тепломассообмена в энергетических установках: Тр. XIV Школы-семинара молодых ученых и спе-циалистов под рук. акад. РАН А.И. Леонтьева. В 2 т. М.: Издательство МЭИ, 2003. С.240—243.
- Савченко Л.А. Физико-химические закономерности процесса сублимационного обезвоживания продук-тов криокристаллизации водно-солевых растворов: Автореф. ... дис. канд. хим.. наук. М.: МГУ, 1982. 16 с.
- Possini F.D., Wagman D.D., Evans W.H., Yaffe J. Se-lected of Cemical Thermodynamics Properties // Washn-gton, 1965.
- 9. Берг Л.Г. Введение в термографию. М.: Наука, 1969. 157 с.