А.П. Можаров, М.И. Осипов

Московский государственный технический университет им. Н.Э. Баумана, Россия

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ТЕПЛОВОГО СОСТОЯНИЯ ЛОПАТКИ ГАЗОВОЙ ТУРБИНЫ С КОНВЕКТИВНО-ПЛЕНОЧНЫМ ВОЗДУШНЫМ И ПАРОВЫМ ОХЛАЖДЕНИЕМ

АННОТАЦИЯ

Представлены результаты численного моделирования газодинамики и теплообмена в сопряженной постановке при обтекании сопловой лопатки газовой турбины с конвективно-пленочной системой охлаждения. Методика расчета верифицирована на базе экспериментальных данных. Показаны преимущества выдува водяного пара в качестве охлаждающей пелены.

1. ВВЕДЕНИЕ

Разработка корректных моделей расчета сопряженного теплообмена и трения в элементах газовых турбин принадлежит к актуальным проблемам создания перспективных ГТУ и ГТД и при физически обоснованной постановке задачи и современных вычислительных возможностях обеспечивает наиболее корректные результаты[1].

Среди работ, посвященных расчету сопряженного теплового состояния лопаток газовых турбин, следует отметить [2], [3], [4]. Однако в указанных работах не рассмотрено влияние на пленочное охлаждение выдува водяного пара.

Целью настоящей работы является разработка и апробация методики сопряженного моделирования лопатки с конвективно-пленочной системой охлаждения в сопряженной постановке при выдуве водяного пара для дальнейшего применения при расчете элементов ГТД.

Ключевым вопросом при моделировании процессов трения и теплообмена в элементах ГТД является корректное описание поведения турбулентного потока при помощи той или иной модели турбулентности. Для обоснования выбора модели турбулентности, наиболее пригодной для численного моделирования лопатки с конвективно-пленочной системой охлаждения в сопряженной постановке была проведена серия расчетов с использованием различных моделей турбулентности. В качестве базы для верификации расчетной методики была выбрана модельная сопловая лопатка газовой турбины с конвективно-пленочной системой охлаждения, прошедшей экспериментальное изучение с высокой степенью точности и достоверности [5].

Расчетная область и граничные условия, использованные в численной модели, были приняты согласно [5].

Следует отметить, что экспериментальная установка состояла из линейного каскада трех лопаток, центральная из которых охлаждалась и была препарирована для замеров, что позволяет использовать периодические границы в межлопаточном канале. Кроме того, с целью получения невозмущенной картины течения и теплообмена на профиле лопатки при выдуве охлаждающей пелены, в экспериментальной установке были максимально отсечены все вторичные течения. Это позволяет использовать полезное упрощение расчетной области — выделить в среднем сечении по высоте лопатки слой, равный по толщине одному шагу рядов отверстий пленочного охлаждения. На верхней и нижней границах данной расчетной области были заданы условия периодичности. Это соответствует лопатке с бесконечно длинной профильной частью.

Модельная сопловая лопатка имеет профиль СЗХ, постоянное по высоте сечение и не имеет закрутки. Подробные геометрические характеристики приведены в работе [5]. Хорда лопатки составляет 144.9 мм, высота 76.2 мм. На входной кромке размещено пять рядов перфорации с расположением отверстий в шахматном порядке. Диаметр отверстий 1 мм. При выборе расчетной области для описания течения в решетке были использованы периодические граничные условия, что позволило рассматривать только одну лопатку. Данные периодические границы, отстоящие друг от друга на 1 шаг решетки, т.е. на 117.7 мм, моделируют бесконечную линейную решетку. Часть входной кромки, оснащенная подводящим устройством и рядами отверстий пленочного охлаждения была теплоизолирована от остального профиля.

Из представленных в [5] режимов течения рассматривается наиболее практически интересный случай трансзвукового обтекания при следующих условиях: (см. табл.1):

Таблица 1

Ma ₁	Ma ₂	Re ₂	<i>Т</i> [*] ₁ , К	Р [*] 1, МПа	<i>P</i> ₂ , МПа	Tu ₁ , %
0.16	0.9	$2 \cdot 10^{6}$	691	3.057	1.793	6.5

число Рейнольдса рассчитано по хорде лопатки и выходным параметрам потока.

Основные параметры охладителя приведены в табл. 2. Все перечисленные условия сохранялись неизменными для случаев моделирования течения при выдуве воздуха и водяного пара.

Таблица 2

$T^*_{\text{охл}},$	$T^*_{\text{охл}}$, Относительный расход, $G_{\text{охл}}$					
K	1	2	3	4	5	
477	0.32%	0.16%	0.20%	0.28%	0.19%	

Задача решена в трехмерной постановке, поэтому, в целях уменьшения затрат времени на расчет, в каналах охлаждения полноценный численный расчет в данной подобласти заменен на граничные условия 3-го рода (температура воздуха и коэффициент теплоотдачи, задаваемые на основе измерений в [5]) на стенках каналов охлаждения.

Зависимость теплофизических свойств материалов задана кусочно-линейными аппроксимациями. Материал лопатки –хромоникелевая сталь ASTM 310 со следующими свойствами: плотность – 7900 кг/м³, удельная теплоемкость – 586.15 Дж/(кг·К) при уровне температур в данной задаче [6]. Зависимость теплопроводности от температуры приведена в табл. 3.

Таблица 3

<i>Т</i> _{метал} , К	373	773
λ _{метал} , Вт/(м·К)	14.2	18.7

2. ОСНОВНЫЕ УРАВНЕНИЯ И МЕТОД ДИСКРЕТИЗАЦИИ

Основную систему образуют осредненные по Фавру стационарные уравнения Навье–Стокса в виде:

$$\frac{\partial(\rho u_i)}{\partial x_i} = 0,\tag{1}$$

$$\frac{\partial(\rho u_i u_j)}{\partial x_i} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_i},$$
(2)

$$\frac{\partial(u_i(\rho E + p))}{\partial x_i} = \frac{\partial}{\partial x_i} (\lambda \frac{\partial T}{\partial x_i} + u_i(\tau_{ij})), \qquad (3)$$

где

$$\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right) - \frac{2}{3} \mu \frac{\partial u_i}{\partial x_i} \,\delta_{ij},$$

$$E = h - \frac{p}{\rho} + \frac{u_i^2}{2},$$

$$\rho = \frac{P}{RT}$$
(4)

(где индекс *i* обозначает перечисление по координатам x,y,z).

В случае турбулентного режима течения система уравнений (1–4) замыкается уравнениями соответствующей модели турбулентности. В случае моделирования пелены водяного пара система уравнений дополнялась уравнением диффузии. В подобласти, моделирующей материал лопатки, решалось только уравнение Фурье в стационарной постановке, без источников тепла в объеме (5).

$$\frac{\partial}{\partial x_i} \left(\lambda \cdot \frac{\partial T}{\partial x_i} \right) = 0.$$
(5)

В ходе итеративного процесса решения на разделе газообразной и твердой подобластей модели обеспечивалась передача теплового потока, по сути являющаяся просто выполнением закона coxpaнения энергии.

Решение производилось с помощью численного метода контрольных объемов при использовании различных моделей турбулентности [7], в частности RNG k- ε , k- ω в модификации Ментера, модель Cпаларта–Аллмараса и модель V²-f Дурбина. Дискретизация основных уравнений проведена на втором порядке точности.

Нерегулярная гибридная многоблочная сетка, состоящая из тетраэдрических и призматических элементов, была построена при помощи сеточного генератора Centaur 6. В подобласти, описывающей газовый поток, пристеночная область была сгущена блоками призматической сетки, призванной максимально точно описать изменение параметров в пограничном слое. Величина Y⁺ по обводу профиля в результате не превысила 1.

Рис. 1. Фрагмент расчетной сетки

3. МОДЕЛИРОВАНИЕ ТУРБУЛЕНТНОСТИ

В настоящей работе был проведен сравнительный анализ применимости ряда моделей турбулентности для рассматриваемого класса задач.

В проведенном ранее анализе авторов [9] было показано, что лучшее совпадение результатов численного моделирования сопряженного теплообмена с экспериментом достигается при использовании модели турбулентности V^2 -f [7, 8]. В отличие от этой модели, большинство моделей турбулентности не обеспечивают корректного описания поведения пограничного слоя в областях, подверженных локальным положительным градиентам давления [9]. Это приводит к завышенной генерации кинетической энергии турбулентности в районе входной кромки и, как следствие, к интенсификации теплообмена в области входной кромки и далее по потоку. Это проявляется в виде завышенных значений температуры профиля лопатки.

4. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

На рис.2–5 представлены распределения числа Маха и статической температуры, а также сопоставление статического давления и температуры экспериментальными данными. Результаты данной работы показывают, что при использовании четырехпараметрической модели турбулентности V^2 -f достигается хорошее согласование результатов расчета и экспериментальных данных по всей длине профиля для случая конвективно-пленочной системы охлаждения.

На рис.6 приведено сравнение результатов расчета, в котором воздух, выдуваемый из входной кромки был заменен на водяной пар с той же температурой и относительными расходами (табл.2). Можно отметить, что пелена водяного пара обладает большей эффективностью, чем воздушная.

ЗАКЛЮЧЕНИЕ

На основе верифицированной методики сопряженного численного моделирования теплообмена и трения в сопловой лопатке ГТУ с конвективнопленочной системой охлаждения получены распределения температуры поверхности при выдуве воздуха и водяного пара. Удовлетворительное совпадение расчетных и экспериментальных данных по распределению температуры стенки по профилю получено при использовании четырехпараметрической модели турбулентности V²-f. Это можно объяснить спецификой моделирования генерации кинетической энергии турбулентности в областях с высокими градиентами скорости.

Проведенная серия расчетов подтвердила, что охлаждающая пелена водяного пара обладает большей эффективностью, чем воздушная.

Работа выполнена в соответствии с грантом РФФИ №05-08-33500а.

Рис. 2. Распределение числа Маха в межлопаточном канале

Рис. 3. Распределение статической температуры в газовой подобласти и материале стенки

у За Средска страната и следу выдув пара

Рис. 4. Визуализация характера течения в районе входной кромки при помощи линий тока охладителя

Рис. 5. Распределение температуры стенки лопатки по длине профиля, К : сравнительный анализ поведения моделей турбулентности

Рис. 6. Распределение температуры стенки лопатки по длине профиля, К : эффект замены охлаждающего воздуха в системе пленочного охлаждения водяным паром

СПИСОК ЛИТЕРАТУРЫ

- Теплообменные аппараты и системы охлаждения газотурбинных и комбинированных установок: Учебник для вузов / В.Л. Иванов, А.И.Леонтьев, Э.А.Манушин, М.И.Осипов; Под ред. А.И.Леонтьева. М.: Изд-во МГТУ им.Н.Э.Баумана, 2003. 592 с.
- Osipov M., Gutshin A. The Conjugate Problem of Heat and Mass Transfer in Porous Media Section with Blowing of Coolant / Proc. Of International Conference and Exhibit Heat Exchangers for sustainable development., Lisbon, Portugal, 1998. P. 497–504.
- 3. Bohn D.E., Becker V.J., Kusterer K.A., Otsuki Y., Sugimoto T. and Tanaka R. 1999, "3-D Internal Flow and Conjugate Calculations of a Convective Cooled Turbine Blade with Serpentine-Shaped and Ribbed Channels," ASME Paper No. 99-GT-220.
- 4. York, W.D., Leylek, J.H. "Three-Dimensional Conjugate Heat Transfer Simulation of an Internally Cooled Gas Turbine Vane", ASME Paper No GT2003-385. 2003.

- Turner, E.R., Wilson M.D., Hylton, L.D., Kaufman R.M. "Analytical and Experimental Evaluation of the Heat Transfer Distribution with Leading Edge Showerhead Film Cooling," NASA CR 174827. 1985.
- Goldsmith A., Waterman and T.E., Hirschhorn H.J. Handbook of Thermophysical Properties of Solid Materials - Volume II: Alloys. The Macmillan Company, New York, USA. 1961.
- 7. **Fluent** Inc., Fluent User's Guide, Version 6.1 (Fluent Inc. New Hampshire).
- Parneix S., Durbin P.A., and Behnia M. Computation of a 3D Turbulent Boundary Layer Using the V2F Model. Flow Turbulence and Combustion, 10:19-46. 1998.
- 9. Можаров А.П., Осипов М.И. Численное моделирование теплового состояния лопатки газовой турбины // Проблемы газодинамики и тепломассообмена в энергетических установках: Труды XV школысеминара молодых ученых и специалистов под руководством академика РАН А.И. Леонтьева. В 2-х т. Т.2. М.: Издательство МЭИ, 2005. 492 с. С. 79–82.